
Cray XD1™ FPGA Development

Private
S–6400–131



© 2005 Cray Inc. All Rights Reserved. This manual or parts thereof may not be reproduced in any form unless permitted by
contract or by written permission of Cray Inc.

U.S. GOVERNMENT RESTRICTED RIGHTS NOTICE

The Computer Software is delivered as "Commercial Computer Software" as defined in DFARS 48 CFR 252.227-7014.

All Computer Software and Computer Software Documentation acquired by or for the U.S. Government is provided with Restricted
Rights. Use, duplication or disclosure by the U.S. Government is subject to the restrictions described in FAR 48 CFR 52.227-14
or DFARS 48 CFR 252.227-7014, as applicable.

Technical Data acquired by or for the U.S. Government, if any, is provided with Limited Rights. Use, duplication or disclosure by the
U.S. Government is subject to the restrictions described in FAR 48 CFR 52.227-14 or DFARS 48 CFR 252.227-7013, as applicable.

Autotasking, Cray, Cray Channels, Cray Y-MP, GigaRing, LibSci, UNICOS and UNICOS/mk are federally registered
trademarks and Active Manager, CCI, CCMT, CF77, CF90, CFT, CFT2, CFT77, ConCurrent Maintenance Tools, COS, Cray Ada,
Cray Animation Theater, Cray APP, Cray Apprentice2, Cray C++ Compiling System, Cray C90, Cray C90D, Cray CF90, Cray EL,
Cray Fortran Compiler, Cray J90, Cray J90se, Cray J916, Cray J932, Cray MTA, Cray MTA-2, Cray MTX, Cray NQS, Cray Research,
Cray SeaStar, Cray S-MP, Cray SHMEM, Cray SSD-T90, Cray SuperCluster, Cray SV1, Cray SV1ex, Cray SX-5, Cray SX-6, Cray T3D,
Cray T3D MC, Cray T3D MCA, Cray T3D SC, Cray T3E, Cray T90, Cray T916, Cray T932, Cray UNICOS, Cray X1, Cray X1E,
Cray XD1, Cray X-MP, Cray XMS, Cray XT3, Cray Y-MP EL, Cray-1, Cray-2, Cray-3, CrayDoc, CrayLink, Cray-MP, CrayPacs,
Cray/REELlibrarian, CraySoft, CrayTutor, CRInform, CRI/TurboKiva, CSIM, CVT, Delivering the power..., Dgauss, Docview,
EMDS, HEXAR, HSX, IOS, ISP/Superlink, MPP Apprentice, ND Series Network Disk Array, Network Queuing Environment,
Network Queuing Tools, OLNET, RapidArray, RQS, SEGLDR, SMARTE, SSD, SUPERLINK, System Maintenance and
Remote Testing Environment, Trusted UNICOS, TurboKiva, UNICOS MAX, UNICOS/lc, and UNICOS/mp are trademarks of
Cray Inc.

AMD and Opteron are trademarks of Advanced Micro Devices, Inc. Celoxica is a trademark of Celoxica Limited. ChipScope, CORE
Generator, ISE, Virtex, Virtex II, Virtex II Pro, and Xilinx are trademarks of Xilinx, Inc. Cygwin is a trademark of Red Hat, Inc. GNU
is a trademark of The Free Software Foundation. IBM and PowerPC are trademarks of International Business Machines Corporation.
Linux is a trademark of Linus Torvalds. MATLAB and Simulink are trademarks of The MathWorks, Inc. ModelSim is a trademark of
Mentor Graphics Corporation. Riviera is a trademark of Aldec, Inc. Specman is a trademark of Versity Design, Inc. Synplicity is
a trademark of Synplicity, Inc. Verilog is a trademark of Gateway Design Automation Corporation. Windows is a trademark of
Microsoft Corporation. All other trademarks are the property of their respective owners.



New Features

Cray XD1™ FPGA Development S–6400–131

This manual contains the following changes to reflect the changed support for FPGA development in
Cray XD1 release 1.3:

• Updated development directory structure, including the new makefile_vars file

• Support in the API for the increased size of an Opteron memory region (up to 1 GB) that the FPGA can
access

• New command, xd1_jtag_route(8), to establish a connection between any JTAG interface card port and
any FPGA

In release 1.3.1, the manual was converted to the new format.





Record of Revision

Version Description

1.3.1 October 2005
Supports Cray XD1 release 1.3.1 (1.3 general availability).

1.3 July 2005
Supports Cray XD1 release 1.3 (limited availability).

1.2 April 2005
Supports Cray XD1 releases 1.2 and 1.2.1.

1.1 October 2004
Supports Cray XD1 releases 1.1.

1.0 August 2004
Supports Cray XD1 releases 1.0.

S–6400–131 Cray Private i





Contents

Page

Preface ix

Accessing Product Documentation . . . . . . . . . . . . . . . . . . . ix

Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . x

Reader Comments . . . . . . . . . . . . . . . . . . . . . . . . xi

Cray XD1 Support . . . . . . . . . . . . . . . . . . . . . . . . xi

Introduction [1] 1

Who Should Read this Manual . . . . . . . . . . . . . . . . . . . . 1

Scope of this Manual . . . . . . . . . . . . . . . . . . . . . . . 1

How this Manual is Organized . . . . . . . . . . . . . . . . . . . . 1

Related Publications . . . . . . . . . . . . . . . . . . . . . . . 2

Cray XD1 Publications . . . . . . . . . . . . . . . . . . . . . . 2

Third-party Publications . . . . . . . . . . . . . . . . . . . . . 4

Cray XD1 Architecture [2] 5

Cray XD1 High-level Physical Layout . . . . . . . . . . . . . . . . . . 5

Chassis . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Compute Blade . . . . . . . . . . . . . . . . . . . . . . . . 7

Expansion Module . . . . . . . . . . . . . . . . . . . . . . . 8

RapidArray Interconnect . . . . . . . . . . . . . . . . . . . . . . 10

Expansion Module [3] 13

FPGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Configurable Logic Blocks . . . . . . . . . . . . . . . . . . . . . 14

Block SelectRAM+ Memory Modules . . . . . . . . . . . . . . . . . . 14

Embedded Multiplier Blocks . . . . . . . . . . . . . . . . . . . . 14

Digital Clock Manager Blocks . . . . . . . . . . . . . . . . . . . . 14

S–6400–131 Cray Private iii



Cray XD1™ FPGA Development

Page

Virtex II Fabric (Routing and Interconnect) . . . . . . . . . . . . . . . . 15

Embedded IBM PowerPC 405 RISC Processor Blocks . . . . . . . . . . . . . 15

QDR II SRAM Interface . . . . . . . . . . . . . . . . . . . . . . 15

RapidArray Transport Interface . . . . . . . . . . . . . . . . . . . . 17

Quick Start [4] 19

Reference Design Overview . . . . . . . . . . . . . . . . . . . . . 19

Command-line Manipulation of FPGAs . . . . . . . . . . . . . . . . . . 20

Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Copying the Design Directory . . . . . . . . . . . . . . . . . . . . 20

Converting FPGA Binary Files . . . . . . . . . . . . . . . . . . . . 21

Downloading Files to the FPGA . . . . . . . . . . . . . . . . . . . 22

Accessing the FPGA . . . . . . . . . . . . . . . . . . . . . . . 23

Erasing the FPGA . . . . . . . . . . . . . . . . . . . . . . . 24

Running the C Reference Programs . . . . . . . . . . . . . . . . . . . 24

Standard HDL Development Flow [5] 27

Overview of the Development Process . . . . . . . . . . . . . . . . . . 27

Design Entry . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 31

Design Considerations [6] 33

Advantages and Disadvantages of FPGAs . . . . . . . . . . . . . . . . . 33

Target Applications . . . . . . . . . . . . . . . . . . . . . . . . 34

Characteristics of Target Applications . . . . . . . . . . . . . . . . . 34

Sample Application . . . . . . . . . . . . . . . . . . . . . . . 35

FPGA Memory Resources . . . . . . . . . . . . . . . . . . . . . . 36

Fabric Bandwidth and Data Flow . . . . . . . . . . . . . . . . . . . . 39

SMP Processor-initiated Fabric Transactions . . . . . . . . . . . . . . . . 39

FPGA-initiated Fabric Transactions . . . . . . . . . . . . . . . . . . . 40

iv Cray Private S–6400–131



Contents

Page

Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Designing for the Cray XD1 System [7] 41

Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Design Template Structure . . . . . . . . . . . . . . . . . . . . . . 44

Working with the Design Template . . . . . . . . . . . . . . . . . . . 48

Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Required Customizations . . . . . . . . . . . . . . . . . . . . . 48

Command Line Execution and Makefile Targets . . . . . . . . . . . . . . 49

Example 1: Using makefile targets . . . . . . . . . . . . . . . . . . 51

Using the Xilinx ISE GUI . . . . . . . . . . . . . . . . . . . . . 51

Simulating the Design . . . . . . . . . . . . . . . . . . . . . . 51

Interfacing User Logic to Other Cray XD1 Resources . . . . . . . . . . . . . . 52

Disabling Unused Core Interfaces . . . . . . . . . . . . . . . . . . . 54

Interaction with the SMP Software Application . . . . . . . . . . . . . . . 54

Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . 55

Software API Commands . . . . . . . . . . . . . . . . . . . . . 56

SMP-initiated RT Fabric Requests . . . . . . . . . . . . . . . . . . . 58

I/O Mapped Accesses . . . . . . . . . . . . . . . . . . . . . 58

Example 2: I/O mapped writes to the AAP . . . . . . . . . . . . . 58

API Function Accesses . . . . . . . . . . . . . . . . . . . . . 59

Example 3: Accessing the AAP with fpga_wrt_appif_val . . . . . . . 60

FPGA-initiated RT Fabric Requests . . . . . . . . . . . . . . . . . . 60

Example 4: Initializing the AAP to access the SMP memory . . . . . . . . . 61

Simulation and Debugging [8] 63

Simulation Models . . . . . . . . . . . . . . . . . . . . . . . . 63

Cray XD1 Core Simulation Models . . . . . . . . . . . . . . . . . . 63

RT Fabric Behavioral Model . . . . . . . . . . . . . . . . . . . . 63

Example 5: Format of the fabric.in file . . . . . . . . . . . . . . . 65

FPGA Transfer Region . . . . . . . . . . . . . . . . . . . . . 66

S–6400–131 Cray Private v



Cray XD1™ FPGA Development

Page

Using the JTAG Interface Card . . . . . . . . . . . . . . . . . . . . 66

The JTAG Interface Card . . . . . . . . . . . . . . . . . . . . . 67

Mapping JTAG Interface Ports to FPGAs . . . . . . . . . . . . . . . . 67

Viewing JTAG Interface Port Connections . . . . . . . . . . . . . . . 68

Connecting a JTAG Interface Port to an FPGA . . . . . . . . . . . . . . 69

Example 6: Connecting a JTAG interface port to an FPGA . . . . . . . . . 69

Restoring the Default JTAG Interface Port Connections . . . . . . . . . . . 69

Connecting a Workstation to a JTAG Interface Port . . . . . . . . . . . . . 69

Troubleshooting [9] 73

Node Hangs After Accessing /proc/ufp/regs . . . . . . . . . . . . . . . 73

Cause . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 73

File /dev/ufp0 Does Not Exist (Interaction with the FPGA AAP Fails) . . . . . . . . 73

Cause . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Procedure 1: To load the FPGA driver . . . . . . . . . . . . . . . . 74

Glossary 75

Tables
Table 1. Related Cray XD1 publications . . . . . . . . . . . . . . . . . 3

Table 2. VHDL references . . . . . . . . . . . . . . . . . . . . . 4

Table 3. Current FPGA AAP variants . . . . . . . . . . . . . . . . . . 13

Table 4. Results of random number generation . . . . . . . . . . . . . . . 36

Table 5. Available memory devices . . . . . . . . . . . . . . . . . . 38

Table 6. ufpapps directory descriptions . . . . . . . . . . . . . . . . . 43

Table 7. Template design directory descriptions . . . . . . . . . . . . . . 47

Table 8. Recommended software packages . . . . . . . . . . . . . . . . 48

Table 9. Design template customizations . . . . . . . . . . . . . . . . . 49

Table 10. Makefile targets . . . . . . . . . . . . . . . . . . . . . 50

Table 11. C API functions . . . . . . . . . . . . . . . . . . . . . 57

vi Cray Private S–6400–131



Contents

Page

Table 12. Commands supported in the fabric.in file . . . . . . . . . . . . 64

Table 13. Arguments of the fabric.in commands . . . . . . . . . . . . . 64

Table 14. JTAG interface card default connections . . . . . . . . . . . . . . 68

Figures
Figure 1. Cray XD1 chassis, physical view . . . . . . . . . . . . . . . . 6

Figure 2. Cray XD1 chassis, logical view . . . . . . . . . . . . . . . . . 7

Figure 3. Compute blade . . . . . . . . . . . . . . . . . . . . . 8

Figure 4. Expansion module, physical view . . . . . . . . . . . . . . . . 9

Figure 5. Expansion module, logical view . . . . . . . . . . . . . . . . 9

Figure 6. RapidArray components in a Cray XD1 chassis . . . . . . . . . . . . 11

Figure 7. QDR II IP Core interface . . . . . . . . . . . . . . . . . . . 16

Figure 8. RT interface . . . . . . . . . . . . . . . . . . . . . . . 18

Figure 9. Standard development flow . . . . . . . . . . . . . . . . . . 28

Figure 10. Additional high-level tools . . . . . . . . . . . . . . . . . . 30

Figure 11. FPGA executes multiple codes simultaneously . . . . . . . . . . . . 34

Figure 12. Random number example . . . . . . . . . . . . . . . . . . 36

Figure 13. FPGA memory hierarchy . . . . . . . . . . . . . . . . . . 37

Figure 14. Structure of /opt/ufpapps . . . . . . . . . . . . . . . . . 42

Figure 15. FPGA organization . . . . . . . . . . . . . . . . . . . . 44

Figure 16. Design template directory structure . . . . . . . . . . . . . . . 46

Figure 17. HDL test bench organization . . . . . . . . . . . . . . . . . 52

Figure 18. Physical components and related address spaces . . . . . . . . . . . 56

Figure 19. JTAG interface card . . . . . . . . . . . . . . . . . . . . 67

Figure 20. Ports on the JTAG interface card . . . . . . . . . . . . . . . . 68

Figure 21. JTAG I/O adapter . . . . . . . . . . . . . . . . . . . . 70

Figure 22. Accessing the JTAG interface card . . . . . . . . . . . . . . . . 71

S–6400–131 Cray Private vii





Preface

The information in this preface is common to Cray documentation provided with
this software release.

Accessing Product Documentation

With each software release, Cray provides books and man pages, and in
some cases, third-party documentation. These documents are provided in the
following ways:

CrayDoc The Cray documentation delivery system that allows you to
quickly access and search Cray books, man pages, and in some
cases, third-party documentation. Access this HTML and PDF
documentation via CrayDoc at the following locations:

• The local network location defined by your system
administrator

• The CrayDoc public website: docs.cray.com

Man pages Access man pages by entering the man command followed by the
name of the man page. For more information about man pages,
see the man(1) man page by entering:

% man man

Third-party documentation

Access third-party documentation not provided through
CrayDoc according to the information provided with the
product.

S–6400–131 Cray Private ix

http://docs.cray.com/


Cray XD1™ FPGA Development

Conventions

These conventions are used throughout Cray documentation:

Convention Meaning

command This fixed-space font denotes literal items, such as file
names, pathnames, man page names, command names, and
programming language elements.

variable Italic typeface indicates an element that you will replace with a
specific value. For instance, you may replace filename with the
name datafile in your program. It also denotes a word or
concept being defined.

user input This bold, fixed-space font denotes literal items that the user
enters in interactive sessions. Output is shown in nonbold,
fixed-space font.

[ ] Brackets enclose optional portions of a syntax representation for
a command, library routine, system call, and so on.

... Ellipses indicate that a preceding element can be repeated.

name(N) Denotes man pages that provide system and programming
reference information. Each man page is referred to by its name
followed by a section number in parentheses.

Enter:

% man man

to see the meaning of each section number for your particular
system.

x Cray Private S–6400–131



Preface

Reader Comments

Contact us with any comments that will help us to improve the accuracy and
usability of this document. Be sure to include the title and number of the
document with your comments. We value your comments and will respond to
them promptly. Contact us in any of the following ways:

E-mail:
docs@cray.com

Telephone (inside U.S., Canada):
1–800–950–2729 (Cray Customer Support Center)

Telephone (outside U.S., Canada):
+1–715–726–4993 (Cray Customer Support Center)

Mail:
Software Publications
Cray Inc.
1340 Mendota Heights Road
Mendota Heights, MN 55120–1128
USA

Cray XD1 Support

Obtain support for the Cray XD1 product in either of the following ways:

Telephone:
1–888–279–2729 (Cray XD1 Customer Support Center)

Through the CRInform website:
http://crinform.cray.com/xd/

Note: Use the contact information provided here if you have a support
agreement with Cray. If, however, you have a support agreement with
a third-party organization that is a Cray channel partner, contact that
organization instead: do not contact Cray directly.

S–6400–131 Cray Private xi

file:///tmp/mytmp.29670/mailto:docs%40cray.com
http://crinform.cray.com/xd/




Introduction [1]

This chapter describes the intended audience for this manual and its scope, and
lists the related publications.

1.1 Who Should Read this Manual

This manual is intended for an experienced hardware or field-programmable gate
array (FPGA) designer who is proficient in logic design using HDL languages.

1.2 Scope of this Manual

This manual is a guide to the FPGA application acceleration processor, an
optional component in a Cray XD1 system. It describes how this processor fits
into the Cray XD1 hardware architecture, and provides guidelines on designing,
developing, and integrating FPGA binaries for use in the system. It does not
provide detailed procedures on using the application acceleration processors
in an application program; for that information, see Cray XD1 Programming
(S–2433).

This document has two companion documents that provide in-depth design
details:

• Design of Cray XD1 RapidArray Transport Core (S–6411)

• Design of Cray XD1 QDR II SRAM Core (S–6412)

1.3 How this Manual is Organized

This manual consists of the following chapters and appendix:

• Chapter 2: Cray XD1 Architecture

Describes the application acceleration processor’s hardware environment and
the surrounding Cray XD1 architecture.

• Chapter 3: Expansion Module

Describes the interfaces on the expansion modules.

S–6400–131 Cray Private 1



Cray XD1™ FPGA Development

• Chapter 4: Quick Start

Describes, at a high-level, how to load an FPGA binary onto the Cray XD1
system for integration with application software. It describes some of the
command-line utilities and application programming interface (API) function
calls that you can use during the software integration process. For more
information on the API, see Cray XD1 Programming (S-2433).

• Chapter 5: Standard HDL Development Flow

Provides an overview of standard development flows for HDL languages.

• Chapter 6: Design Considerations

Discusses issues to consider when you design FPGA logic for the FPGA
AAP, including a discussion of possible target applications, processor-FPGA
communication, and FPGA memory resources.

• Chapter 7: Designing for the Cray XD1 System

Describes specifics on designing for the Cray XD1 AAP. It includes details of
the file and HDL code structure in the Cray Inc. design template, as well as
methods that the C application can employ to interact and share data with
user logic running in the AAP.

• Chapter 8: Simulation and Debugging

Describes the simulation models and methods available to simulate and
debug the AAP.

• Chapter 9: Troubleshooting

Describes common issues and resolutions.

1.4 Related Publications

This section lists Cray and third-party publications that supplement the contents
of this manual.

1.4.1 Cray XD1 Publications

Refer to the publications in Table 1, page 3 for related information about the
Cray XD1 system.

2 Cray Private S–6400–131



Introduction [1]

Table 1. Related Cray XD1 publications

Publication title Brief description

Cray XD1 Release Description (S–2453) Identifies the main new features and
enhancements in a particular release
of the product. Includes information
about the hardware, embedded
software, and Linux-based software of
the system.

Cray XD1 System Overview (S–2429) Overview of the Cray XD1 computer
and a description of its hardware and
software components.

Cray XD1 Programming (S–2433) Development tools on the Cray
XD1 system and the application
programming interface for the FPGA
application acceleration processor.

Design of Cray XD1 RapidArray
Transport Core (S–6411)

Companion to this document.
Provides in-depth design details for a
required IP core.

Design of Cray XD1 QDR II SRAM Core
(S–6412)

Companion to this document.
Provides in-depth design details for a
required IP core.

Cray XD1 Release Notes (S–2455) Information about resolved issues and
known issues for a particular release
of the product.

S–6400–131 Cray Private 3



Cray XD1™ FPGA Development

1.4.2 Third-party Publications

The Cray HDL template and reference designs are written in VHDL. Table 2,
page 4 lists publications that are useful references for designers who work in
VHDL.

Table 2. VHDL references

Title Author, Publisher

VHDL for Programmable Logic Kevin Skahill, Cypress Semiconductor

VHDL for Logic Synthesis Andrew Rushton, John Wiley & Sons
Ltd.

The Designer’s Guide to VHDL Peter J. Ashenden, Morgan Kaufmann
Publishers

4 Cray Private S–6400–131



Cray XD1 Architecture [2]

This chapter describes the Cray XD1 system from a hardware perspective. It
covers the high–level physical layout of a Cray XD1 system, as well as the
RapidArray interconnect. This chapter focuses on the environment of the
application acceleration processor, an optional component in a Cray XD1 system.
The application acceleration processor is a field-programmable gate array
(FPGA).

2.1 Cray XD1 High-level Physical Layout

The basic architectural unit of the Cray XD1 system is the Cray XD1 chassis. A
large number of chassis may be connected together to form a Cray XD1 system.

2.1.1 Chassis

A Cray XD1 chassis may contain a maximum of 31 commodity and specialized
processors that reside on a maximum of 6 compute blades. Figure 1, page 6
shows a physical view of the Cray XD1 chassis.

S–6400–131 Cray Private 5



Cray XD1™ FPGA Development

Power supply

Fabric expansion

PCI-X expansion

PCI-X I/O

Disk blades

Fan assembly

Main board

Expansion 
module

Compute blade

Compute blade

Figure 1. Cray XD1 chassis, physical view

In a fully populated chassis, these processors are distributed as follows:

• Twelve 64-bit AMD Opteron processors configured as six two-way symmetric
multiprocessors (SMPs) that run Linux.

• Twelve RapidArray processors—Processors, designed by Cray, that process
most of the communications within a chassis.

• Six application acceleration processors—Optional FPGAs that act as
coprocessors to the Opteron processors.

• A management processor that runs software to monitor and manage the
chassis hardware.

Figure 2, page 7 illustrates the logical distribution of these processors.

6 Cray Private S–6400–131



Cray XD1 Architecture [2]

Figure 2. Cray XD1 chassis, logical view

A Cray XD1 computer system can consist of one to hundreds of Cray XD1 chassis
that interconnect in various configurations. A maximum of 13 chassis reside
in a seven-foot cabinet.

2.1.2 Compute Blade

A compute blade is a subassembly of the Cray XD1 chassis; refer to Figure 1, page 6
and to Figure 3, page 8. Each chassis contains one to six compute blades. Each
compute blade includes the following components:

• Two 64-bit Opteron processors, configured as a two-way SMP

• 1 to 8 GB of double data rate synchronous dynamic random access memory
(DDR SDRAM) per compute processor, providing a maximum of 16 GB of
DDR SDRAM per SMP

• A RapidArray processor, which provides two 2-GBps RapidArray links to
the switch fabric

• A connector for an expansion module (not shown in Figure 3, page 8)

S–6400–131 Cray Private 7



Cray XD1™ FPGA Development

RapidArray processor

Opteron processor

Air baffle

Opteron processor

DIMMs

Connector

DIMMs

Figure 3. Compute blade

2.1.3 Expansion Module

The expansion module is an optional customer-orderable subassembly that
attaches to a compute blade; refer to Figure 4, page 9 and Figure 5, page 9. Each
expansion module contains the following components:

• An additional RapidArray processor, which provides two additional
RapidArray links per compute blade

• An optional application acceleration processor (FPGA)

• Four QDR II SRAMs for the FPGA

• A programmable clock source for the FPGA

When all 6 expansion modules are fully populated, a chassis contains 12
RapidArray processors, 24 internal RapidArray links, and 6 application
acceleration processors.

8 Cray Private S–6400–131



Cray XD1 Architecture [2]

RapidArray processor

Connector

Application acceleration processor

Figure 4. Expansion module, physical view

Accelerator
FPGA

HyperTransport
to S MP

RapidArray

RAP

3.2
GB/s

2
GB/s

2
GB/s

3.2
GB/s

Neighbor
Compute Module

2
GB/s

2
GB/s

Neighbor
Compute Module

RAP

3.2
GB/s

QDR II
RAM

QDR II
RAM

QDR II
RAM

QDR II
RAM

Figure 5. Expansion module, logical view

S–6400–131 Cray Private 9



Cray XD1™ FPGA Development

The RapidArray processor provides the interface for the FPGA to connect to the
local Opteron processors as well as the RapidArray fabric. The interface’s speed
and performance match that of the HyperTransport links, but the link protocol is
simplified to reduce logic requirements in the FPGA.

The quad-data-rate (QDR) static random access memory (SRAM) provides local
high-speed storage for the FPGA. Each of the four QDR II SRAM circuits has its
own fully independent control.

The programmable clock enables the user to set the speed of the FPGA for each
design.

2.2 RapidArray Interconnect

Processors and memory within a chassis and between chassis are linked by a
high-speed switch fabric called the RapidArray interconnect. Regardless of
the size of a Cray XD1 system, the high-bandwidth, low-latency RapidArray
interconnect is its central organizing construct. This interconnect enables the
system to avoid PCI-X bus bottlenecks and shared-resource contention.

The RapidArray interconnect is a 96-GB-per-second (maximum per chassis)
nonblocking, embedded crossbar-switch fabric that connects the RapidArray
processors (RAPs). Each chassis has either one or two RapidArray switch fabrics,
each of which consists of RapidArray links and a 24-port internal switch; see
Figure 6, page 11.

The compute blades connect to the internal RapidArray switch at 4 GBps: 2 GBps
each for simultaneous transmit and receive operations.

10 Cray Private S–6400–131



Cray XD1 Architecture [2]

RAP RAP

Opteron Opteron

RAP RAP

Opteron Opteron

RAPRAP

Opteron Opteron

RAP RAP

Opteron Opteron

RAP RAP

Opteron Opteron

RAP RAP

Opteron Opteron

Main 24-port switch
Expansion 
24-port switch

Cray XD1 chassis

RapidArray processor
(RAP) connects to  
Opteron at 3.2 GB/s

RA link: 2 GB/s

Figure 6. RapidArray components in a Cray XD1 chassis

To make use of the optional additional RapidArray components on the expansion
modules, a chassis must also include a fabric expansion card; refer to Figure 1,
page 6. The fabric expansion card provides the chassis with a second RapidArray
switch. With this card and six expansion modules, a chassis has 24 external
RapidArray interfaces; without it, only 12.

The optional expansion modules and fabric expansion card enable the compute
blades to connect to the internal RapidArray switch at 8 GBps: 4 GBps each for
simultaneous transmit and receive operations.

S–6400–131 Cray Private 11



Cray XD1™ FPGA Development

12 Cray Private S–6400–131



Expansion Module [3]

This chapter provides additional information about the expansion module—in
particular, about the FPGA application acceleration processor (AAP). The
manufacturer of the FPGA, Xilinx, Inc., also provides thousands of pages of
documentation on its website at http://www.xilinx.com.

Table 3, page 13 lists the FPGA AAP modules that the Cray XD1 system currently
supports.

Table 3. Current FPGA AAP variants

Cray part Cray 87 no. Xilinx model Module memory

90-0003-05 87-0003-09 XC2VP50-7 4 x 1M x 36

90-0003-081 87-0003-11 XC2VP50-7 4 x 1M x 36

Note: Cray 87 numbers are listed to allow translation between the Cray 87
number reported by some parts of the Cray XD1 software and the Cray part
number that is used in most places. Use the Cray part number whenever
possible because the software will not accept the Cray 87 numbers in future
releases.

3.1 FPGA

The Xilinx Virtex-II Pro series of field-programmable gate array (FPGA) is
arguably the most technically sophisticated silicon and software product in
the programmable logic industry. Users can program the FPGA to execute
computationally intensive and repetitive algorithms. Virtex-II Pro devices are
optimized for high-density and high-performance system designs. The following
subsections describe the types of functionality that these devices implement.

1 Educational version

S–6400–131 Cray Private 13

http://www.xilinx.com


Cray XD1™ FPGA Development

3.1.1 Configurable Logic Blocks

Configurable logic blocks (CLBs) provide functional elements for combinatorial
and synchronous logic, including basic storage elements. BUFTs (3-state
buffers) associated with each CLB element drive dedicated, segmentable,
horizontal-routing resources. Each CLB includes four slices (a maximum of 128
bits) and two 3-state buffers.

3.1.2 Block SelectRAM+ Memory Modules

Block SelectRAM+ memory modules provide large 18-Kb storage elements of
dual-port RAM, programmable from 16K x 1 bit to 512 x 36 bits, in various depth
and width configurations. Each port is totally synchronous and independent and
offers three read–during–write modes. Block SelectRAM+ memory can cascade to
implement large embedded-storage blocks.

The supported memory configurations for dual-port and single-port modes are:
16K x 1 bit, 8K x 2 bits, 4K x 4 bits, 2K x 9 bits, 1K x 18 bits, and 512 x 36 bits.

3.1.3 Embedded Multiplier Blocks

A multiplier block is associated with each SelectRAM+ memory block. The
multiplier block is a dedicated 18 x 18 bit twos-complement signed multiplier.
It is optimized for operations based on the block SelectRAM+ content on one
port. The 18 x 18 multiplier can be used independently of the block SelectRAM+
resource. Read/multiply/accumulate operations and DSP filter structures are
extremely efficient. Both the SelectRAM+ memory and the multiplier resource
connect to four switch matrices to access the general routing resources.

3.1.4 Digital Clock Manager Blocks

Digital clock manager (DCM) blocks provide self-calibrating, fully digital
solutions for clock distribution delay compensation, clock multiplication and
division, and coarse- and fine-grained clock phase shifting. The DCM and global
clock multiplexer buffers provide a complete solution for designing high-speed
clock schemes.

A maximum of twelve DCM blocks are available. To generate de-skewed
internal or external clocks, you can use each DCM to eliminate clock distribution
delay. The DCM also provides 90-, 180-, and 270-degree phase-shifted versions
of its output clocks. Fine-grained phase shifting offers high-resolution phase
adjustments in increments of 1/256 of the clock period. Very flexible frequency

14 Cray Private S–6400–131



Expansion Module [3]

synthesis provides a clock output frequency equal to a fractional or integer
multiple of the input clock frequency.

Virtex-II Pro devices have 16 global clock MUX buffers, with a maximum of eight
clock nets per quadrant. Each clock MUX buffer can select one of the two clock
inputs and switch glitch-free from one clock to the other. Each DCM can send a
maximum of four of its clock outputs to global clock buffers on the same edge.
Any global clock pin can drive any DCM on the same edge.

3.1.5 Virtex II Fabric (Routing and Interconnect)

A new generation of programmable routing resources called Active Interconnect
Technology interconnect all elements. The general routing matrix (GRM) is an
array of routing switches. Each programmable element is tied to a switch matrix,
which enables multiple connections to the general routing matrix. The overall
programmable interconnection is hierarchical and supports high-speed designs.

3.1.6 Embedded IBM PowerPC 405 RISC Processor Blocks

Each FPGA contains two embedded PowerPC processors. The PPC405 RISC
CPU can execute instructions at a sustained rate of one instruction per cycle.
On-chip instruction and data cache reduce design complexity and improve
system throughput. Embedded PowerPC 405 RISC processor blocks provide
maximum performance of 400 MHz.

All programmable elements, including the routing resources, are controlled by
values stored in static memory cells. These values are loaded in the memory
cells during configuration and can be reloaded an unlimited number of times to
change the functions of the programmable elements.

3.2 QDR II SRAM Interface

The Cray QDR II IP core block controls data flow between the FPGA and the
module's QDR II RAMs (refer to Figure 7, page 16). Each QDR II SRAM has
its own QDR interface. On the SRAM (right) side of the circuit, the interface
has separate read and a write buses that function independently and can
simultaneously transfer 36 bits (32 bits of data and 4 bits of parity) at a rate of up
to 1.6 GB per second in each direction. On the user (left) side of the circuit, the
interface has separate read and write buses that function independently and can
simultaneously transfer 72 bits (64 bits of data and 8 bits of parity) at a rate of one
64-bit word per clock period in each direction.

S–6400–131 Cray Private 15



Cray XD1™ FPGA Development

For design details, see Design of Cray XD1 QDR II SRAM Core (S–6412).

Q
dr

 1
In

te
rf

ac
e

Q
d

r 
2

In
te

rf
a

ce
Q

dr
 3

In
te

rf
ac

e
Q

d
r 

4
In

te
rf

a
ce

dw_1[71:0]

dr_1[71:0]

ar_1[19:0]

dr_2[71:0]

dr_3[71:0]

QDR II SRAM
IP Core

aw_1[19:0]

r_n_1

w_n_1

bw_n_1[7:0]

dr_1[71:0]

dw_2[71:0]

ar_2[19:0]

aw_2[19:0]

r_n_2

w_n_2

bw_n_2[7:0]

dr_2[71:0]

dw_3[71:0]

ar_3[19:0]

aw_3[19:0]

r_n_3

w_n_3

bw_n_3[7:0]

dr_3[71:0]

dw_4[71:0]

ar_4[19:0]

aw_4[19:0]

r_n_4

w_n_4

bw_n_4[7:0]

dr_4[71:0]

E
xt

e
rn

al
 b

us
 in

te
rf

a
ce

 t
o

 Q
dr

 I
I S

R
A

M
 c

hi
ps

locked_dcm

qdr_clk90

qdr_clk0

reset_n

ram_rdy

Figure 7. QDR II IP Core interface

16 Cray Private S–6400–131



Expansion Module [3]

3.3 RapidArray Transport Interface

The Cray RapidArray Transport (RT) IP core block provides the RapidArray
fabric interface to an FPGA design; see Figure 8, page 18. The interface can both
initiate and process responses for read and write transactions across the fabric. To
facilitate this, there are two interfaces to the core: fabric request and user request.

The Fabric Request Interface issues read and write requests to the user logic
when it receives packets from the fabric (which originate from a node). The User
Request Interface accepts read and write requests from the user logic that are for
a device on the fabric (SMP processor memory).

The RT interface has the following characteristics:

• 64-bit interface at a maximum speed of 200 MHz

• 3.2 GBps interface—1.6 GBps simultaneous transmit and receive

• Posted writes

• Multiple outstanding read requests

• Data bursts up to 64 bytes per request

S–6400–131 Cray Private 17



Cray XD1™ FPGA Development

R
es

po
n

se
S

ig
na

ls
R

e
q

ue
s

t
S

ig
n

a
ls

R
es

p
on

se
S

ig
na

ls
R

e
q

ue
st

 
S

ig
n

al
s

RT Core

Fabric 
Request 
Interface

User 
Request 
Interface

Transmit
to fabric

Receive 
from fabric

1.6 GBps

1.6 GBps

user _clk

user _enable

user _reset _n

freq _ addr (39 :3)

freq _ size (3 :0)

freq _ mask (7: 0)

freq _ rw_n

freq _ ts

freq _ srctag (4:0 )

freq _ data (63:0 )

freq _ valid

freq _ enable

uresp _ ts

uresp _ srctag (4:0 )

uresp _ size (3 :0)

uresp _ data (63: 0)

uresp _ full

ureq _ addr (39 :3)

ureq _ size (2 :0)

ureq _ mask (7 :0)

ureq _ rw_ n

ureq _ byte _req

ureq _ ts

ureq _ data (63: 0)

ureq _ full

ureq _ notag

ureq _ srctag (4:0 )

fresp _ enable

fresp _ valid

fresp _ ts

fresp _ size (2 :0)

fresp _ srctag (4:0 )

fresp _ data (63 :0 )

rt_ ready

Figure 8. RT interface

18 Cray Private S–6400–131



Quick Start [4]

This chapter describes the Cray FPGA reference designs and how to use them
along with the fcu(1) utility program to explore the FPGA subsystem. Many
of the techniques described are useful during initial integration between a
completed FPGA design and the software that uses it.

4.1 Reference Design Overview

The following reference designs are in subdirectories of /opt/ufpapps if the
ufpapps software package is installed (this is the case if the node is in a partition
with the "full" software installation option):

• Hello

A simple design that demonstrates the basic operation of interfacing the
FPGA to the Opteron processor. This design is an excellent place to start for
both software and FPGA designers.

• Mince

The Minimal Compute Engine (Mince) design demonstrates interactions
between the Opteron processor and FPGA that are more complicated. Mince
is a diagnostic tool that tests the FPGA memory and bus interfaces.

• MTA

The Mersenne Twister Accelerator (MTA) design demonstrates a
practical application, an FPGA implementation of the Mersenne Twister
pseudorandom number generator.

Documentation for each reference design and its sample application programs
is in the doc subdirectory (for example, /opt/ufpapps/mince/doc) of the
relevant reference design directory.

S–6400–131 Cray Private 19



Cray XD1™ FPGA Development

4.2 Command-line Manipulation of FPGAs

This section describes the process that you use to manipulate the FPGA from a
Linux shell.

This tutorial focuses on the Mince design because it is a good diagnostic tool. You
can use it to verify that the FPGA subsystem is working correctly. You can use a
similar procedure with any of the reference designs.

4.2.1 Overview

After you simulate an FPGA application design and compile it into binary form,
you can load it onto the FPGA AAP. The Cray XD1 system provides a variety
of Linux command–line tools and a software API to facilitate this process. A
detailed description of the FPGA software API, and command-line utilities is
available in Cray XD1 Programming (S–2433).

4.2.2 Copying the Design Directory

The reference designs are in /opt/ufpapps. This procedure modifies some of
these files. Therefore, you must first copy them to a user-writable location such as
$HOME or /tmp.

1. Log in to Linux on the Cray XD1 system.

2. Copy the design directory structure:

> cp -rP /opt/ufpapps $HOME

3. Make the design user-writable:

> chmod -R u+w $HOME/ufpapps

4. Go to the mince design directory:

> cd $HOME/ufpapps/mince

5. Go to the location of the compiled binary files:

> cd bin

20 Cray Private S–6400–131



Quick Start [4]

4.2.3 Converting FPGA Binary Files

The final output from the FPGA design process is an FPGA binary file that
contains the configuration bit stream for a specific Xilinx device. Before you
can load an FPGA binary on the FPGA AAP, you must convert it to a Cray
proprietary format by prepending a header. The header contains information
about both the hardware for which the design is targeted and the clock rate at
which to run the design. You can perform this task with the FPGA control utility
(the fcu(1) command). It is a general purpose command that enables a designer
to program and interact with the FPGA. For a list of options, refer to the fcu(1)
man page or type fcu --help.

To convert the FPGA binary, the fcu(1) command prepends information from a
text file to the Xilinx binary file design.bin and creates the Cray proprietary file
design.bin.ufp. If no header file exists, the fcu command can create it.

The following example creates a new header file and converts mince50.bin to
mince50.bin.ufp. This example assumes that the FPGA AAP is an XC2VP50
Xilinx chip.

1. Log in to Linux on the Cray XD1 system.

2. Determine the type of application accelerator on the target node:

> lsnode -v | grep -E -i '^hardware|^app'

Hardware ID: 269.1

App Accelerator: 87-0003-09

Hardware ID: 269.2

App Accelerator: 87-0003-09

Hardware ID: 269.3

App Accelerator: 87-0003-09

Hardware ID: 269.4

App Accelerator: 87-0003-09

Hardware ID: 269.5

App Accelerator: 87-0003-09

Hardware ID: 269.6

App Accelerator: 87-0003-09

3. If necessary, use Table 3, page 13 to determine the part number. For example,
87-0003-09 matches part number 90-0003-05.

S–6400–131 Cray Private 21



Cray XD1™ FPGA Development

4. Create a header file for the target application accelerator:

> fcu -b

Enter Cray Part Number [10 characters]

90-0003-05

Enter FPGA clock frequency in Integer MHz

[Range : 63 to 199, inclusive]

180

The fcu command creates a text file called ufphdr. The contents of the file
are as follows:

Cray Part Number : 90-0003-05;

FPGA Frequency MHz : 180;

5. Convert the Xilinx binary file to the Cray format:

> fcu -c mince50.bin ufphdr

header size 59

input fpga load size 2377668

In this example, the fcu command creates a file called mince50.bin.ufp
which is ready for download.

4.2.4 Downloading Files to the FPGA

You can load an FPGA design.bin.ufp file through either the software API
function fpga_load(3) or the fcu(1) utility from the command line. To load
a file onto the FPGA from the command line, use the fcu command as in the
following example:

> fcu -l mince50.bin.ufp

file size 2381764

setting device location /dev/ufp0

programming device 2381764 bytes

opening device /dev/ufp0

programmed FPGA 2381764 bytes

closing device file descriptor 4

The FPGA is now programmed with the mince50.bin.ufp logic.

22 Cray Private S–6400–131



Quick Start [4]

4.2.5 Accessing the FPGA

In general, access to the FPGA occurs through the Linux API. The API provides
functions for reading and writing values to the FPGA, and for mapping the QDR
SRAM of the FPGA into the virtual memory space of the processor.

As a convenience, a virtual file /proc/ufp/regs exists to show the contents of
some configuration registers that are not directly user-accessible and the first
64 bytes of the QDR SRAM register space. This can be useful for displaying
design-dependent configuration and status registers from the command line
during initial debugging. Bit definitions for the Host Interface registers are in
Design of Cray XD1 RapidArray Transport Core (S–6411). An example of the virtual
file contents follows:

> cat /proc/ufp/regs

LPC Bus Kernel Virtual Address ffffff0040df8000

FPGA AAP Config and Status Space

Offset 0x200

CME Ctrl Reg : 0x05

CME Stat Reg : 0x03

CME Intr Status Reg : 0x07

Host Interface

Offset 0x300

RAT Base Num Reg 0 : 0x01

RAT Base Num Reg 1 : 0x00

RAT Config Num Reg : 0x01

RAT Version Num Reg : 0x00

Test Reg 0 : 0x00

Test Reg 1 : 0x00

RAT Compile Num Reg : 0x04

Clock Config Reg 0 : 0xB4

User Reset : 0x01

Clock Status Reg 0 : 0x00

Clock Frequency MHz : 0xB3

Host Latch Register : 0x00

FPGA AAP Application Space Starting Kernel Virtual Address

ffffff0040dfa000

Application Interface

Register space kernel virtual address ffffff0044dfa000

Offset Range : Value

0x0000-0x0008 : 0x0000002B00080100

S–6400–131 Cray Private 23



Cray XD1™ FPGA Development

0x0008-0x0010 : 0x0000000000000000

0x0010-0x0018 : 0x0000000000000000

0x0018-0x0020 : 0x0000000000000000

0x0020-0x0028 : 0x0000000000000000

0x0028-0x0030 : 0x0000000000000000

0x0030-0x0038 : 0x0000000000000000

0x0038-0x0040 : 0x0000000F0000000E

The first two tables of registers are of little general interest, except the Clock
Config Reg 0 and Clock Frequency MHz registers of the Host Interface.
The clock configuration register shows the requested programmable clock
frequency (a hexadecimal value in MHz) at which the FPGA application will run.
The clock frequency MHz register shows the measured clock frequency with an
accuracy of +/– 1 MHz.

The Application Interface registers are the first 64 bytes of the FPGA register
space. Their content depends on the design of the application logic. These values
are refreshed every time you read the file.

4.2.6 Erasing the FPGA

After you program an FPGA, it remains operational until you reset or unload it.
Resetting the FPGA leaves the device configured but holds the user logic in reset.
If you take the FPGA out of reset, it resumes normal operation. Unloading the
FPGA clears all configuration in the device and returns it to an unprogrammed
state.

Note: If you plan to continue to the next section, do not reset or unload the
FPGA at this time.

To reset the FPGA:

> fcu --reset

To unload the FPGA:

> fcu --unload

4.3 Running the C Reference Programs

After you load an FPGA, it is ready for software to use it. Each reference design
includes one or more programs that use the FPGA logic. Compiled versions of
these programs are located with the design binary files in the bin directory of the

24 Cray Private S–6400–131



Quick Start [4]

design. The Mince design includes bertest, qdrtest, and the test.sh script
which calls berttest and qdrtest.

The following examples show calling the berttest program with two slightly
different sets of parameter values. Both calls use the Mince FPGA to run a bit
error rate test (BERT) on the QDR SRAM and on a segment of the SMP DRAM (to
test the communication channel between the FPGA and the SMP memory).

> ./berttest -v -r -w 0 -t 60 -d rand -a incr

Test Parameters -

Data Pattern : rand

Address Pattern : incr

Wait States : 0

QDR RAM Banks : Bank0 Bank1 Bank2 Bank3

RT BERT : Enabled

Execution Time : 60 s

Test PASSED.

> ./berttest -v -r -w 0 -t 60 -d incr -a rand

Test Parameters -

Data Pattern : incr

Address Pattern : rand

Wait States : 0

QDR RAM Banks : Bank0 Bank1 Bank2 Bank3

RT BERT : Enabled

Execution Time : 60 s

Test PASSED.

The shell script test.sh calls both berttest and qdrtest numerous time
with different parameters. This script is a useful tool for performing a sanity
check on the AAP hardware.

S–6400–131 Cray Private 25



Cray XD1™ FPGA Development

26 Cray Private S–6400–131



Standard HDL Development Flow [5]

This chapter describes a standard development flow that begins with design
entry and ends with an FPGA binary.

5.1 Overview of the Development Process

Cray Inc. uses standard processes and tools to develop designs for the FPGA
application acceleration processor. The overall development process has the
following four basic steps:

1. Design entry—Create the source code that makes up the design.

2. Synthesis—Translate the source code into a low-level netlist of logic
elements that are suitable for implementation in an FPGA.

3. Simulation—Simulate the design source code or the synthesized design
netlist.

4. Implementation—Determine the physical placement and routing for the
netlist logic on the target FPGA.

A designer has a wide variety of Xilinx and third-party tools to choose from
for FPGA development (Cray does not supply them). The following sections
identify some of the most common options for each of the development steps.
The following figure illustrates the standard development flow.

S–6400–131 Cray Private 27



Cray XD1™ FPGA Development

HDL Design Models & Test Bench

Synthesis

Implementation

Binary File

Simulation

Cray Cores

0100010101

1010101011
0100101011

0101011010

1001110101

0110101010

0100010101

1010101011
0100101011

0101011010

1001110101

0110101010

Metadata

Figure 9. Standard development flow

28 Cray Private S–6400–131



Standard HDL Development Flow [5]

5.2 Design Entry

Hardware description languages (HDLs) can specify a hardware design in terms
of familiar programming constructs such as conditional statements, loops, and
function calls. VHDL and Verilog are perhaps the two most common languages
in current use. Because they are tailored specifically to hardware design, HDLs
provide a flexible and powerful way to generate efficient logic. However, this
tailoring makes them unfamiliar territory for people outside the hardware design
field.

In order to communicate hardware design to a more general audience, a number
of companies are working to support the use of other programming languages
(primarily C and C++) as HDLs. The development of C and C++ for hardware
design facilitates the partitioning of resources between software and hardware,
and facilitates hardware and software co-simulation and code reuse.

You can generate the user application block with many tools, including
higher-level languages such as C and C++ or the Xilinx System Generator for
DSP package. The latter enables you to design digital signal processing (DSP)
blocks with the MATLAB package from The MathWorks. Figure 10, page 30
shows how a higher-level flow might fit into the standard development flow of
the Cray XD1 system.

S–6400–131 Cray Private 29



Cray XD1™ FPGA Development

C Synthesis

process  (a, m) is
begin
  z <= a and  m;
end process;

int  mask (a, m)
{
  return  (a & m);
}

VHDL/Verilog Synthesis

Place and
Route

Adelante
Celoxica

Forte Design Systems
Mentor Graphics

Prosilog
Synopsis

… and others.

SystemC,
ANSI C/C++

VHDL,
Verilog

Gate Level
EDIF File

Mentor Graphics
Synopsis
Synplicity

Xilinx
… and others.

Xilinx

a

m
z

01001011010101
01010110101001
01000101011010
10100101010101

Binary File
for FPGA

MATLAB/
Simulink

System
Generator for

DSP

The
MathWorks

Xilinx

Standard
Flow

High
Level
Flow

Figure 10. Additional high-level tools

The Xilinx ISE tools provide a text editor for generating design source code. The
text editor includes support for highlighting both VHDL and Verilog syntax.
It also includes templates for common logic functions. Several other free text
editors support design entry; for example, GNU Emacs (or Xemacs). Like the
Xilinx ISE software, Emacs supports both a VHDL mode and Verilog mode that
provide syntax highlighting and design templates.

In addition to designing and coding logic by hand, you can use the Xilinx
CORE Generator tool in ISE to create custom logic blocks from a family of
parameterizable cores. A wide variety of common cores is available, including
simple mathematical functions and DSP functions.

30 Cray Private S–6400–131



Standard HDL Development Flow [5]

5.3 Synthesis

The synthesis process translates the source HDL code into gate-level elements,
such as AND gates, OR gates, and flip-flops. The Cray reference designs use the
Xilinx XST synthesizer (part of the Xilinx ISE package). However, synthesis tools
are also available from several other vendors; for example: Synplicity, Mentor
Graphics, and Synopsis.

The output of the synthesis process is a gate-level netlist. If you use the Xilinx
XST package, the netlist is a Xilinx proprietary NGC file (for example, top.ngc).

5.4 Simulation

You perform the simulation step on a design test bench. A test bench is an HDL
structure that includes the design itself along with models that manipulate the
design inputs and monitor the outputs. Simulators compile HDL code into
simulation models, which you can use to verify the design. If an FPGA design
is fully implemented, you can create a back-annotated simulation model. This
annotated model contains the actual delays from the placed design.

The reference designs work with either the Aldec Riviera simulator or the Mentor
Graphics Modelsim simulator. However, most standard simulators should work
because the designs, test bench, and models are all VHDL source files. You can
also use more powerful test bench and simulation tools such as the Versity
Specman simulator.

5.5 Implementation

Design implementation is the process of translating, mapping, placing, routing,
and generating an FPGA binary file for your design. The implementation process
uses the proprietary Xilinx translate, map, and place-and-route tools, which are
part of the Xilinx ISE tool set, to assign the logic that you create during design
entry and synthesis to specific physical resources of the target device.

A set of user-determined timing and placement constraints guides the Xilinx
process. These constraints are in the user constraint file (UCF).

S–6400–131 Cray Private 31



Cray XD1™ FPGA Development

32 Cray Private S–6400–131



Design Considerations [6]

6.1 Advantages and Disadvantages of FPGAs

The power of a field-programmable gate array (FPGA) as an application
acceleration processor is its ability to perform well in areas that a microprocessor
does not, rather than its ability to compete directly with a standard
microprocessor. The two main advantages an FPGA has over a microprocessor
are as follows:

• FPGAs have a flexible architecture. You can customize and optimize the logic
in the FPGA to perform only the required tasks.

• FPGAs can exploit parallelism. General-purpose microprocessors have
limited support for instruction or data parallelism. At most, they can perform
a handful of operations in parallel and this is difficult to control from a high
level programming language. FPGAs can perform thousands of operations
in parallel.1

Figure 11, page 34 illustrates that the 64-bit compute processor is limited to linear
execution and fixed word length; the FPGA can manipulate multiple variable
length data items concurrently by using fine-grained parallelism.

1 This obviously depends upon the size and complexity of the operation, the size of the FPGA, and the
opportunities for parallelism in the algorithm.

S–6400–131 Cray Private 33



Cray XD1™ FPGA Development

…

…

Compute
Processor

do for each array
element

end

Fine-grained parallelism applied 
for 100x potential speedup

Application Acceleration
FPGA

DataSet...

…

.

.

.

Figure 11. FPGA executes multiple codes simultaneously

An FPGA also has disadvantages. The key disadvantage is speed. A
microprocessor has a fixed set of highly optimized functional blocks that can run
at a very high clock rate. The generic logic building blocks and interconnect of
an FPGA cannot support the same clock speeds. As a general rule, an FPGA
supports a maximum clock rate that is approximately one–tenth that of a
processor like the Opteron.

6.2 Target Applications

This section specifies the characteristics of target applications in general and
describes one sample application.

6.2.1 Characteristics of Target Applications

The following characteristics of applications make them candidates for
acceleration by FPGAs:

• The processor cannot reach its maximum performance due to loop overhead,
cache thrashing, inefficient instructions, and so on.

• The processor cannot exploit data or instruction parallelism that is inherent in
the function.

34 Cray Private S–6400–131



Design Considerations [6]

Some examples of real-world applications that exhibit these characteristics are as
follows:

• Searching (generic data streams as well as specialized searches for genetic
application)

• Sorting

• Digital signal processing

• Image processing and recognition

• Graphics acceleration

• Encryption and decryption

• Coding and decoding

• Error correction

• Random number generation

• Some mathematical algorithms

• Bit manipulation

6.2.2 Sample Application

The Mersenne Twister random number algorithm can efficiently generate a large
number of pseudorandom numbers for use in computations such as Monte Carlo
analysis. The FPGA uses this algorithm to generate integers with a uniform
distribution that do not repeat a value in 219937 -1 operations.

The FPGA delivers slightly more than three times the performance of the fastest
available Opteron processor (at the time of writing). In addition, while the
Opteron processor uses its full capacity to execute the algorithm, the FPGA uses
less than 20% of its capacity.

The performance of the FPGA is limited only by the speed at which numbers can
be written into processor memory, not by the FPGA logic. Figure 12, page 36
illustrates the path that the FPGA uses to access the compute processor memory.

S–6400–131 Cray Private 35



Cray XD1™ FPGA Development

RAPProcessor
Mersenne

Twister RNG

pseudo-random numbers

Figure 12. Random number example

Because the design consumes only a small amount of the FPGA, a great deal of
capacity remains to provide post-processing functions for the random numbers.
For example, the logic can convert the integer values to floating point values, or
it can convert the uniform distribution to a normal distribution in an additional
pipeline stage. An Opteron processor must perform these functions serially,
which further degrades its performance.

Table 4, page 36 compares the random-number-generation capabilities of an
Opteron processor and an FPGA.

Table 4. Results of random number generation

2.2 GHz Opteron
Processor

FPGA (XC2VP50-7) @ 200
MHz)

Source Original C code VHDL code

Speed (32-bit integers
per second)

~101 million ~319 million

Capacity used 100% < 20% (includes RT core)

6.3 FPGA Memory Resources

For many applications, access to memory resources can limit performance.
The FPGA has access to four types of memory; this helps to maximize the
performance of memory-intensive applications. The first two types of memory
are the distributed and block RAM available within the Xilinx FPGA. These

36 Cray Private S–6400–131



Design Considerations [6]

small, high-speed memories are excellent for exploiting parallelism in algorithms
because many of them are distributed across the chip.

The third type of memory is the four external banks of the second generation
Quad Data Rate (QDR II) SRAM (refer to Figure 13, page 37). These memories
provide high data transfer rates with low latency and no restrictions on burst
size. In addition, they have independent read and write interfaces, so data can be
simultaneously written and read from different addresses every clock cycle.

The last type of memory is the DDR SDRAM banks of the SMPs. The FPGA has
high-speed burst access through the RapidArray fabric to the large pools of
memory that belong to each compute processor. Figure 13, page 37 shows the
memory hierarchy (slowest to fastest speed) that is available to the FPGA and the
relative size of each type of memory.

FPGA
Distributed RAM
(Kilobits)

FPGA
Block RAM
(Kilobytes)

Module
QDR II RAM
(Megabytes)

SMP
SDRAM
(Gigabytes)

Figure 13. FPGA memory hierarchy

S–6400–131 Cray Private 37



Cray XD1™ FPGA Development

The types of memory have different characteristics that make them suitable for
different tasks. Table 5, page 38 lists those characteristics and suggests some
typical uses.

Table 5. Available memory devices

RAM Type Characteristics Typical uses

Opteron DDR SDRAM Large pool of memory
capable of high-speed
burst access.

• Buffer large sets of
data for processing
as well as storage of
the results

QDR II RAM Medium-size pool of
memory capable of
high- speed random
access. Supports
simultaneous read
and write accesses.
Four banks allow
independent parallel
access.

• Store segments of a
larger data set that is
in Opteron SDRAM

• Large lookup tables

FPGA Block RAM Very-high-speed full
dual- port RAM.
Between 136 and 232,
18-Kb RAMs per chip.
Enables a great deal of
parallelism.

• FIFOs

• Shift registers

• Lookup tables

FPGA Distributed RAM Very-high-speed pseudo
dual-port RAM. 30,000
to 50,000 16x1 RAMs.
Enables massive
parallelism when
memory requirements
are small.

• Small FIFOs

• Shift registers

• Small lookup tables

38 Cray Private S–6400–131



Design Considerations [6]

6.4 Fabric Bandwidth and Data Flow

The RapidArray Transport bandwidth available to the FPGA depends on
a number of factors. The theoretical maximum available bandwidth is
approximately 8/9*1.6 Gigabytes per second (approximately 1.422 GBps) in each
direction. This maximum bandwidth occurs only with efficient burst transactions
between the Opteron and FPGA. The maximum write data bandwidth is
decreased when the read interface is in operation, since read requests must be
transmitted on the write bus. Another important consideration is the expansion
fabric. The expansion fabric and the FPGA share a common path to the Opterons
and so FPGA bandwidth can be affected by Opteron traffic that runs through the
expansion fabric.

While the data path between the Opteron and FPGA is important, it is not the
only path to consider. Transferring data into the Opteron memory from disk
or a network location is much more likely to be the limiting factor in overall
application performance.

6.5 SMP Processor-initiated Fabric Transactions

Writes made from the SMP processor to the FPGA are posted. This means
that once the write is made, the processor moves on to its next operation. It
does not wait for a response from the FPGA. This greatly improves the overall
performance of transferring data to the AAP. Read requests, however, require the
processor to wait for a response from the FPGA (in other words, the requested
data). There is no mechanism for the processor to issue burst read requests to
the FPGA or to have multiple outstanding read requests. As a result, the SMP
processor can write to the FPGA much more efficiently than it can read. This is
generally true for most types of processor interfaces, even, for example, DRAM
interfaces. It is this performance gap between read and write transactions that
gives rise to the popularity of write-only architectures for achieving the highest
performance. In a write-only architecture, data is written from the SMP processor
to the FPGA, and then the AAP writes it back to the SMP processor (rather than
having the SMP processor read it back).

S–6400–131 Cray Private 39



Cray XD1™ FPGA Development

6.6 FPGA-initiated Fabric Transactions

The FPGA has complete control of its fabric interface and so it has capabilities
not available to the application that runs on the SMP processor. The FPGA can
burst read and burst write to and from the fabric (for example, to and from the
SMP memory). In addition to the ability to post writes, the FPGA can also have
multiple read requests outstanding. These facts can make DMA access from the
FPGA very efficient.

6.7 Limitations

The current software release has an important restriction. The Opteron can burst
write to the FPGA memory space, but cannot burst read from it. This issue can be
addressed by programming the FPGA to write to the Opteron memory window,
since the FPGA is capable of bursting in both directions.

You must run the QDR II SRAM IP core at a minimum clock speed of 130MHz.
This restriction results from the output timing of the QDR II SRAMs. When the
SRAMs operate at clock speeds of 130 MHz or above, an internal delay-locked
loop (DLL) is enabled. When the SRAMs operate below 130 MHz the internal
DLL is not used and the output timing of the data changes. The QDR II SRAM IP
core does not adapt to the change in data output timing at clock speeds below 130
MHz. If the user logic must run at a clock speed slower than 130 MHz, the user
logic must translate between the two clock domains.

40 Cray Private S–6400–131



Designing for the Cray XD1 System [7]

This chapter describes the Cray XD1 FPGA application acceleration processor
development environment and how the FPGA user logic interfaces to the
Cray XD1 system and to the application software.

7.1 Overview

User logic for the FPGA AAP must be able to communicate with the surrounding
system. Cray IP cores provide this ability. Each core provides an interface to
a specific part of the system. You must design the FPGA user logic to interact
with these cores. The documents listed in Section 1.4.1, page 2 provide full
descriptions of the Cray IP cores and their interfaces.

Cray includes a package (ufpapps) in the Cray XD1 software distribution to
assist you in understanding how to integrate user logic into the Cray XD1 system.
This package includes the Cray HDL cores, reference designs, and a design
template. By default, the ufpapps RPM package creates a directory structure
under /opt/ufpapps; see Figure 14, page 42.

S–6400–131 Cray Private 41



Cray XD1™ FPGA Development

ufpapps

hello

mince

mta

bin

rt_core

vhdl_template

Design template

doc

src

hdl

par

simlib

Documentation of the
design hardware and
software

Precompiled
FPGA and
linux binaries

Source files including the
HDL and C application code

Reference design

design_name

xc2vp50

HDL design that
follows the design
template structure

qdr2_core

Reference design

Reference design

libxc2vp

Pre-synthesized logic
required by designs to
use the RT Core

riviera

Pre-compiled simulation
libraries (Aldec)

Core library folders
that are linked into
designs.

HDL source
generated from
netlist.

Figure 14. Structure of /opt/ufpapps

42 Cray Private S–6400–131



Designing for the Cray XD1 System [7]

Each reference design is based on the design template and includes the Cray
cores by reference in order to interface with the rest of the system. The hello
design is a simple example and a good place to start becoming familiar with
the HDL structures and the Cray cores. Table 6, page 43 describes the ufpapps
directory structure.

Table 6. ufpapps directory descriptions

Directory Subdirectory Description

hello bin Contains precompiled FPGA binaries and C
application code that can be used to quickly
start interacting with the AAP.

doc Contains detailed documentation on the
reference design HDL and C application code.

src Contains the C application source code and
Makefile as well as a directory structure
containing the HDL sources.

mince Another reference design.

mta Another reference design.

libxc2vp ipcore/par/xc2vp50 Contains presynthesized logic that designs
that use ipcore require. Cores are in NGC
format because it can contain logic placement
information. This helps to ensure consistent
performance when you incorporate the cores
in user designs.

ipcore/hdl Contains the synthesized netlists for the QDR
II core. You can use this netlist to simulate
the core, but it is slower than the simulation
libraries.

ipcore/simlib/riviera Contains precompiled simulation libraries for
Riviera.

vhdl_template Contains the HDL design template described
later in this section.

S–6400–131 Cray Private 43



Cray XD1™ FPGA Development

7.2 Design Template Structure

The design template in the ufpapps package includes a top-level VHDL file that
instantiates all the components shown in top.vhd of Figure 15, page 44. The
top-level design files of the template are in VHDL. However, by using VHDL's
ability to support "black box" logic components, it is also possible to use other
HDLs to develop designs for the AAP.

The top-level VHDL file forms a wrapper that combines several logic
components. Two of the components are the required logic cores for connecting
to the RapidArray processor and to the QDR II SRAMs. A third component
generates the user-programmable clock. The fourth component is the user
application component that contains all design-specific logic. The user
application component can be written in VHDL, or Verilog, or any other
language that can generate a Xilinx netlist. The only requirement is that the user
logic component provides the required interface signals to the rest of the design.

RapidArray Fabric

top.vhd

rt
_

co
re

q
dr

2_
co

re

user_app

prog_clk_gen

QDR SRAM

Figure 15. FPGA organization

44 Cray Private S–6400–131



Designing for the Cray XD1 System [7]

The design template also provides a common directory structure and build
environment that supports development with the graphical Xilinx ISE tools and a
simple Makefile based automated development flow. The same structure works
on both the Windows1 and Linux operating systems. The template is in the
/opt/ufpapps/vhdl_template/src directory. This design template offers
the following features:

• Complete definition of all the FPGA external interfaces and pins

• Complete framework of makefiles for compiling, simulating, and building
the design

• Separation of Cray HDL code and structures from user files

• Separation of Cray cores and simulation models from user files

• Straightforward integration into new Cray Inc. software releases

This directory structure is simple, flexible, and easy to maintain; see Figure 16,
page 46. However, depending on the tool set that you choose for development,
you may wish to modify the structure as required. For example, if a third-party
synthesis tool is used, a separate syn directory may be useful to contain
vendor-specific setup and control files.

1 To use the makefile environment on a Windows system, you can install the free Cygwin software
package (see www.cygwin.com). It includes the GNU make package.

S–6400–131 Cray Private 45



Cray XD1™ FPGA Development

design_name hdl

hdl_tb

par

timing

user_app

All user source
code (user_app
block and below)

Timing
diagrams.

UCF and other
PAR files.

HDL test
bench and
models.

Top level
HDL source
files.

sim

simlib

Simulation
libraries

cray

Common HDL
source code
required by all
designs.

xc2vp50

Simulation
setup and
stimulus
files.

riviera

modelsim

Figure 16. Design template directory structure

46 Cray Private S–6400–131



Designing for the Cray XD1 System [7]

Table 7, page 47 describes the template design directories.

Table 7. Template design directory descriptions

Directory Subdirectory Description

hdl Contains the top.vhd file which fully
defines interfaces to the user application and
Cray cores.

user_app Contains the source code for the FPGA user
logic design.

cray Contains Cray VHDL code that is required
in all designs.

hdl_tb Contains a VHDL test bench for the design,
source models for the QDR II SRAMs, and a
simple behavioral model for the RapidArray
processor

par xc2vp50 Multiple directories that contain the
synthesis and implementation files for the
different variants of the AAP module

sim Contains Modelsim scripts that are useful in
the simulation of the design

tc_01

tc_02

...

Multiple directories that contain test case
input and output files; each directory
contains a separate test case that you can
run individually or as part of a series for
regression testing

timing Contains diagrams that illustrate the
behavior of some design blocks; You can
display these diagrams with a free viewer
(see www.timingdesigner.com).

simlib

modelsim Contains simulation libraries for the
modelsim simulator

riviera Contains simulation libraries for the riviera
simulator

S–6400–131 Cray Private 47



Cray XD1™ FPGA Development

7.3 Working with the Design Template

This section details how to use the design template in each step of the design
process. You can work from either the command line or the GUI environment
that the third-party tools provide. This process requires software packages that
are not part of the Cray XD1 software distribution.

7.3.1 Tools

The design template works with specific tools. It can be used with other tools, but
some modification will likely be necessary. Table 8, page 48 lists tools that you
can use with the template with little or no modification.

Table 8. Recommended software packages

Type Software package
In Cray XD1 software
distribution?

Shell Bash Yes

Editor Emacs, vi Yes

Build management Make Yes

HDL Compilation Aldec Riviera, Mentor
Modelsim, Xilinx ISE

No

HDL Simulation Aldec Riviera, Mentor
Modelsim

No

Synthesis Xilinx ISE No

Place and Route Xilinx ISE No

7.3.2 Required Customizations

Table 9, page 49 describes the files in the design template that likely require
customization.

48 Cray Private S–6400–131



Designing for the Cray XD1 System [7]

Table 9. Design template customizations

File Customization

makefile_vars Update makefile variables to refer to
your tools and paths.

hdl/user_app/XXX Add user logic files to this directory.

hdl/user_app/Makefile Update the SOURCE variable to contain
all user logic HDL source files.

par/arch /top.npl Add the appropriate hdl files (update by
hand or use the GUI).

par/arch /top.prj Add the appropriate hdl files (update by
hand or use the GUI).

par/arch /top.ucf Adjust the timing specifications to the
desired operational frequency.

sim/tc_XX /fabric.in
sim/tc_XX/test.do

Create a directory for each test case and
update the fabric.in and test.do
files in each directory as required.

7.3.3 Command Line Execution and Makefile Targets

The template includes a structure of makefiles that enable you to initiate all
steps of the design process from the command line. These makefiles refer to the
makefile_vars file at the top level of the design directory structure. This
file centralizes the setting of some variables that all the makefiles use. Table 9,
page 49 indicates that you need to customize the values of these variables for
your configuration. Comments in the file describe the variables. Typically, you
need to customize at least the following variables: SIMULATOR, TOOL_ROOT,
and UFPAPPS.

After you customize the design template, you can use the make command with
the targets described in Table 10, page 50.

S–6400–131 Cray Private 49



Cray XD1™ FPGA Development

Table 10. Makefile targets

Target Description

sim_setup Simulation setup.

Creates the simulation libraries and directories that are
prerequisites for simulation. Make this target before
the first time simulation is run and every time that you
add new HDL files to or remove them from the design.

sim Batch mode simulation.

Compiles required files and starts simulation in batch
mode, which runs all test cases and reports error and
warning assertions in the output. Test cases must be
in the sim directory in subdirectories labeled tc_01,
tc_02, and so on.

sim test=DIR Interactive mode simulation.

Compiles the required HDL files and starts the
simulator GUI with the test case files as stimulus.
Test cases must be in the sim directory in directories
labeled tc_01, tc_02, and so on.

xc2vp50 Produce an FPGA binary.

Synthesizes the HDL code, runs the logic mapper,
and then the logic place and route tools. It is possible
to compile logic for different FPGAs. This target is
explicitly for the Xilinx XC2VP50 FPGA. For example
par/xc2vp50 is the directory that stores information
for constructing the FPGA binary for the Xilinx Virtex
2 Pro 50.

clean Clean up temporary files.

Removes temporary files from the design directories.

clean_all Clean up temporary and intermediate files.

Removes all temporary and intermediate synthesis
files from the design directories.

50 Cray Private S–6400–131



Designing for the Cray XD1 System [7]

To initiate one of these steps:

1. Move to the directory that holds the HDL design files (for example,
design_name in Figure 14, page 42).

2. Run the make command:

> make target

where target is one of the entries in Table 10, page 50.

Example 1: Using makefile targets

This example sets up the simulation files and then starts the simulator GUI
for interactive verification.

> cd /path/to/mydesign/src> make sim_setup...

> make sim test=tc_01

7.3.4 Using the Xilinx ISE GUI

You can run the commands that produce an FPGA binary from either the Linux
shell or from the Xilinx ISE GUI. The GUI requires a project file to run. The
project file is in the par subdirectory of the target model FPGA (for example,
par50). Its name is top.npl. Describing how to use the third-party tools is
beyond the scope of this document. For information on using the Xilinx ISE GUI,
refer to the Xilinx documentation that is provided with the tool or on the Xilinx
website (http://www.xilinx.com).

7.3.5 Simulating the Design

You can simulate a design by instantiating it and connecting it to simulation
models that provide stimulus. The design template includes a test bench in
the hdl_tb directory; its name is top_tb.vhd. Figure 17, page 52 shows the
structure of the test bench.

S–6400–131 Cray Private 51

http://www.xilinx.com


Cray XD1™ FPGA Development

hdl_tb/top_tb.vhd

hdl_tb/fabric_model.vhd

hdl/top.vhd

rt
_

co
re

q
dr

2
_

co
re

user_app

prog_clk_gen

hdl_tb/cy7c1314v18.vhd

sim/tc_XX/fabric.in

sim/tc_XX/fabric.out

Figure 17. HDL test bench organization

Stimulus for the fabric model changes depending on which test case you run.
The stimulus files for a test case and the output from the last time the test case
ran are in the tc_ XX (for example, tc_01) subdirectory of the sim directory.
For the fabric model, these input and output files are called fabric.in and
fabric.out respectively.

The test.do file in the tc_ XX subdirectory contains a list of simulator
commands to execute when the test case runs. The simulator run time is an
important parameter to verify if you run the test case in batch mode. For further
details on using the simulation models, see Chapter 8, page 63.

7.4 Interfacing User Logic to Other Cray XD1 Resources

The FPGA user logic interfaces to the Cray XD1 system through the RT core
and the QDR II SRAM core. The application design determines which cores or
portions of cores that you need.

52 Cray Private S–6400–131



Designing for the Cray XD1 System [7]

Often, the purpose of the FPGA AAP is to accelerate a software algorithm. The
challenge is to write part of the algorithm in HDL code and then interface the
user logic to the system so that a program on an SMP can use it. The interface
between the application and the FPGA user logic consists of data flows and the
control structures that manage them.

When you identify a suitable application or algorithm, examine the data flows
and resources that it requires. There are several ways to move data between the
SMP and the FPGA user logic. To decide where to store data and how to move
it between the SMP and the FPGA logic, keep the suggestions from Chapter 6,
page 33 in mind. Consider the following questions:

• How will the SMP acquire the data (for example, from a disk or network)?

• How fast must the application process data?

• What is the structure of the data?

• How will the software move the data to the FPGA and in what form?

• Where will the FPGA store intermediate and final results?

• How will the FPGA return results to the SMP?

• How will the SMP acquire the data (for example, from a disk or network)?

• How fast must the application process data?

• What is the structure of the data?

• How will the software move the data to the FPGA and in what form?

• Where will the FPGA store intermediate and final results?

• How will the FPGA return results to the SMP?

For a description of the methods of moving data between the SMP software
application and the FPGA user logic, see Section 7.5, page 54.

After you identify the data flow and data structures, consider the control
mechanisms and structures that you need.

Control mechanisms are dependent on the data flow but typically include
configuration registers and ring buffers. For example, you can use configuration
registers to tell the FPGA logic the locations of data structures in the SMP
memory and when to start processing.

S–6400–131 Cray Private 53



Cray XD1™ FPGA Development

When you know the data and control requirements, you can create a memory
map. This map defines where in the FPGA address space to locate the data and
control resources; applications on the SMP also use this map. The mapping of
resources is flexible—you can tailor it to each design.

At the minimum, user logic must use the Fabric Request Interface of the RT
core to respond to the SMP software application. The user logic that connects
to the interface compares the request addresses to the memory map and takes
appropriate action. Some examples of requests are accessing an internal register
or block ram and translating and forwarding a request to an interface of the QDR
core. The hello reference design demonstrates some basic examples of how to
handle these accesses.

Accesses to certain resources may require arbitration. This occurs if two portions
of user logic can access the resource or if both the application on the SMP and
part of the user logic can access the resource. The user logic is responsible for
arbitration whenever it is required.

7.4.1 Disabling Unused Core Interfaces

If the user logic does not require the use of some of the interfaces on a core or
an entire core that is instantiated in top.vhd, force the unused signals to an
unchanging inactive state from the user_app/user_app.vhd file. This causes
the HDL compiler to optimize out the unnecessary logic. The hello reference
design includes some examples.

7.5 Interaction with the SMP Software Application

This section explains the relationship between API calls from a software
application on the SMP and the RT core bus transactions that are delivered to the
user logic in the FPGA. For further details of the C API function calls and the RT
core bus transactions, see Cray XD1 Programming (S–2433) and Design of Cray XD1
RapidArray Transport Core (S–6411), respectively.

In the Cray XD1 architecture, the FPGA AAP is an RT fabric device. All accesses
to or from the FPGA happen across the RT fabric.

Software applications on the SMP access the FPGA by calling the API, which
initiates appropriate transactions on the RT fabric. These transactions travel
through the RT fabric and are delivered to the RT core in the AAP. It is the
responsibility of the user logic in the AAP to process the transaction and respond
appropriately.

54 Cray Private S–6400–131



Designing for the Cray XD1 System [7]

User logic in the FPGA can also access the SMP memory through the RT core.
The user logic in the FPGA sends a bus transaction to the RT core, which
forwards it through the RT fabric to hardware on the SMP, where it becomes a
read or write transaction to the SMP DRAM.

7.5.1 Memory Map

Because the RAP effectively connects the FPGA to the local SMP’s
HyperTransport link, the FPGA is accessible via a region of the HyperTransport
I/O address space. Specifically, the FPGA occupies a 128 MB address region
of the link. Any HyperTransport read and write requests issued by the SMP to
this region are directed to the RT interface of the FPGA which passes them on to
the user logic. From a logical perspective, the FPGA appears similar to a PCI
device in a legacy system, but, from a performance perspective, it appears as if
the FPGA connects directly to the SMP.

S–6400–131 Cray Private 55



Cray XD1™ FPGA Development

SMP RAP-2

DIMMs DIMMs 1 2 3 4
QDR SRAM

Expansion module

HyperTransport
RapidArray Transport 

(RT)

RAP-2
512 MB

RAP-1
512 MB

RAM

AAP
128 MB

RAP

00

512 MB 128 MB

D
R

A
M

 s
pa

ce

0

FPGA
App.

Accel.
Processor

Application-
dependent

memory map

I/O
 s

pa
ce

Figure 18. Physical components and related address spaces

7.5.2 Software API Commands

Table 11, page 57 lists the C API functions for the FPGA AAP. For more
information on the API, see Cray XD1 Programming (S–2433).

56 Cray Private S–6400–131



Designing for the Cray XD1 System [7]

Table 11. C API functions

API function name Description

fpga_open Opens an FPGA device

fpga_load Loads a converted binary logic file into an
FPGA

fpga_is_loaded Queries the programming state of an FPGA

fpga_reset Places the FPGA user logic into reset

fpga_start Releases the FPGA user logic from reset.

fpga_memmap Maps a region of the FPGA address space into
the application address space

fpga_mem_sync Forces completion of all outstanding
transactions to mapped FPGA memory

fpga_register_ftrmem Registers a region of application memory for
direct access by FPGA

fpga_dereg_ftrmem Deregisters an FPGA transfer region

fpga_set_ftrmem Sets up a region of memory in application
process for direct access by FPGA

Note: This function is deprecated.
Cray recommends that you use the
fpga_register_ftrmem function instead.

fpga_rd_appif_val Reads a value from the FPGA address space
and guarantees access order

fpga_wrt_appif_val Writes a value to the FPGA address space and
guarantees access order

fpga_status Gets the status of an FPGA device

fpga_unload Clears the programming of an FPGA

fpga_close Closes an FPGA device

S–6400–131 Cray Private 57



Cray XD1™ FPGA Development

7.5.3 SMP-initiated RT Fabric Requests

The software application can initiate transactions to the FPGA in two ways. It can
either map the FPGA into the address space of the SMP and then make ordinary
memory references or it can call specific read and write functions from the API.

Note: The important difference between these two access methods is that
the I/O mapped accesses allow write combining while the read and write
functions calls do not.

7.5.3.1 I/O Mapped Accesses

I/O mapped accesses take advantage of a feature called "write combining.” Write
combining greatly improves the performance of write accesses from the SMP to
the FPGA by combining multiple write accesses into a single HyperTransport
packet. The processor hardware does this by identifying writes to sequential
address regions and packing them into a single burst write transaction.

One important side effect of write combining is that writes may not occur in
the same order in which they were issued. For example, if writes are made
to addresses 1, 2, 4, 3 in that order, the write combining feature re-orders the
transactions into a sequential burst of 1, 2, 3, 4.

This type of access is often useful when the program accesses general-purpose
memory because the order of the writes is often not important. In the
cases where order is important, the application program can either call the
fpga_mem_sync(3) function which enforces order by inserting a memory fence
or call the fpga_rd_appif_val(3) and fpga_wrt_appif_val(3) functions.

7.5.3.1.1 Software API Details

Memory mapping the FPGA and then reading and writing to a location in the
mapped memory requires the software application to make the function calls
shown in Example 2, page 58. For simplicity, the code and function calls listed
below are not complete. For complete information on the functions and their use,
see Cray XD1 Programming (S–2433).

Example 2: I/O mapped writes to the AAP

u_64 fpga_mem, i;

my_fpga = fpga_open(args);

...

if (!fpga_is_loaded(args)) {

rtn = fpga_load(args);

58 Cray Private S–6400–131



Designing for the Cray XD1 System [7]

}

...

fpga_mem = fpga_memmap(args);

...

for (i = 7; i >= 0; i--;) {

fpga_mem[i] = i;

}

...

In Example 2, page 58, the program maps the FPGA and then writes a sequence
of 64 bit values to locations that are offset from the base of the I/O mapped
region. The program writes the value 7 to offset 7, the value 6 to offset 6, and
so on down to offset 0.

7.5.3.1.2 Hardware API Details

The accesses shown in Example 2, page 58 are memory mapped. Therefore, the
processor reorders and combines them into a burst access to the FPGA. The user
logic on the FPGA receives a write request from the fabric request interface of the
RT core. The request is a single burst write of eight quadwords to address 0 with
data values 0, 1, 2, 3, 4, 5, 6, and 7. This effectively addresses 0x0, 0x8, 0x10, 0x18,
0x20, 0x28, 0x30, 0x38 because quadwords are addressed. For more information
on the RT core interface, refer to Design of Cray XD1 RapidArray Transport Core
(S–6411).

7.5.3.2 API Function Accesses

The API functions fpga_wrt_appif_val(3) and fpga_rd_appif_val(3) do
not allow write combining and enforce the order of reads and writes. Use these
functions when you access control and status information because they ensure
that all transactions complete in order. These functions are not as efficient as
memory-mapped accesses because they enforce transaction order. Therefore, they
are not suitable for large data transfers.

7.5.3.2.1 Software API Details

Example 3, page 60 shows how an application can use the
fpga_wrt_appif_val(3) function. For simplicity, the code and
function calls in the example are not complete. For complete information on the
functions and their use, see Cray XD1 Programming (S–2433).

S–6400–131 Cray Private 59



Cray XD1™ FPGA Development

Example 3: Accessing the AAP with fpga_wrt_appif_val

u_64 fpga_mem, i;

my_fpga = fpga_open(args);

...

if (!fpga_is_loaded(args)) {

rtn = fpga_load(args);

}

...

for (i = 7; i >= 0; i--;) {

fpga_wrt_appif_val(my_fpga, i, i, TYPE_VALUE, &err);

}

In Example 3, page 60, the program loads the FPGA and then writes a sequence
of 64 bit values to the FPGA address space at quadword offsets 7 down to 0
(addresses 0x38 down to 0x0).

7.5.3.2.2 Hardware API Details

The program in Example 3, page 60 uses the fpga_wrt_apapif_val function;
therefore, the order of the write transactions is preserved. The user logic on the
FPGA receives eight single quadword write requests from the RT core fabric
request interface in order. The first is a quadword write to offset 0x38 with a
value of 7. For more information on the RT core interface, refer to Design of Cray
XD1 RapidArray Transport Core (S–6411).

7.5.4 FPGA-initiated RT Fabric Requests

The FPGA can access the local memory of the SMP. To do so, the FPGA user logic
requires initialization information from the application program on the SMP. At
a minimum, this initialization includes a pointer to the shared memory buffer
in the SMP DRAM. The software must write this pointer to the FPGA with the
fpga_wrt_appif_val(3) function. The type parameter of the function must
have the value 1, which translates the address to the type required by the FPGA.

User logic in the FPGA can use the RT core User Request Interface to generate
read and write requests to the SMP. Writes are posted and can be burst
transactions of up to eight quadwords. Unlike the SMP, the AAP user logic has
full control over the ordering and all other aspects of the write transactions
through the RT core. Also unlike the SMP, the AAP can issue burst read
requests of up to 64 bytes and issue multiple outstanding read requests. By

60 Cray Private S–6400–131



Designing for the Cray XD1 System [7]

issuing multiple burst read requests, the FPGA can achieve full utilization of the
HyperTransport link bandwidth when it reads from the SMP memory.

Example 4: Initializing the AAP to access the SMP memory

u_64 fpga_mem, i;

my_fpga = fpga_open(args);

...

if (!fpga_is_loaded(args)) {

rtn = fpga_load(args);

}

...

ftr_mem = fpga_set_ftrmem(args);

...

fpga_wrt_appif_val(my_fpga, SMP_MEM_PTR_REG, ftr_mem, 1, &err);

Example 4, page 61 shows how a program creates an FPGA transfer region and
then writes a pointer to that region to a register location, SMP_MEM_PTR_REG, in
the FPGA user logic. For more information, see Design of Cray XD1 RapidArray
Transport Core (S–6411).

S–6400–131 Cray Private 61



Cray XD1™ FPGA Development

62 Cray Private S–6400–131



Simulation and Debugging [8]

This chapter describes some of the methods available to assist you in debugging
user logic on the FPGA application acceleration processor. Cray provides both
simulation models and a hardware interface to the Xilinx JTAG port for the
purpose of debugging and verification.

8.1 Simulation Models

Simulation models for all the Cray XD1 cores as well as a simple behavioral
model for the RT fabric are included in the Cray XD1 software distribution. These
models are in the design template simulation test bench.

8.1.1 Cray XD1 Core Simulation Models

Simulation models are present for each of the Cray cores. The models come in
several formats:

• An encrypted Riviera model

• A VHDL netlist file

Encrypted models should perform faster during simulation, but you can use
them only with the specified simulation software package. You can use VHDL
netlists with any simulator.

8.1.2 RT Fabric Behavioral Model

The behavioral model for the RT fabric is a simple VHDL model that you can use
to simulate read and write requests to and from the SMP SDRAM and processors.
Typically, designers modify the fabric model inputs or the fabric model itself to
properly verify the user logic. Examples of how to use the RT fabric model are in
each reference design.

The fabric model inputs are read from the fabric.in file. Requests from the
fabric model appear at the fabric request interface of the RT core where the user
logic must handle them. Read requests can be compared against expected values
and assertions will be raised when the expected and actual values differ.

The fabric.in file may contain several commands. Table 12, page 64 lists the
fabric commands; the fabric.in file also documents these.

S–6400–131 Cray Private 63



Cray XD1™ FPGA Development

Table 12. Commands supported in the fabric.in file

Command name Command format

Initialize Link I

Print P text_to_print

Delay D delay_value

Read R address expected_data byte_mask

byte_request size

Write W address write_data byte_mask

byte_request size

Burst B data byte_mask

Table 13, page 64 describes the fabric.in command arguments.

Table 13. Arguments of the fabric.in commands

Argument Description

text_to_print A text value. The text to print to the console.

delay_value An integer value greater than 1. The number of user
clock cycles to delay.

address A 40-bit value. The hex address to access.

expected_data A 64-bit value. The data read is compared to this
value and an assertion is raised if the values differ.

byte_mask An 8-bit value. Controls which bytes of the data to
access. The least significant (furthest right) bit, bit 0,
controls the least significant byte (furthest right) byte
0. A value of logic 1 enables the byte.

byte_request A single-bit value. When the byte request is a logic
1, the byte mask is used to determine which bytes
to access. When byte request is logic 0, a quadword
request is made.

size A single-byte value. The size of the request in
doublewords. A value of 0x0 indicates a single
doubleword transfer, while a value of 0xF indicates a
16 doubleword transfer.

64 Cray Private S–6400–131



Simulation and Debugging [8]

Some additional conventions that these input files use are as follows:

• All numeric values are in hexadecimal notation.

• The # character introduces a comment.

Example 5, page 65 shows a fabric.in file. The example performs the
following actions:

• Delay for 100 user clock cycles.

• Print a string that describes the read which follows.

• Burst read that starts at address 0x0004000000 and is 16 doublewords long.
A read command must begin with a read line and then follow with enough
burst lines to equal the size of the access. The first read line and each
subsequent burst line includes the expected value from each subsequent
location.

• Print a string that describes the write which follows.

• Burst write that starts at address 0x0004000018 and is 10 doublewords long.
A write command must begin with a write line and then follow with enough
burst lines to equal the size of the access. Each line of write command
includes a data value and a byte mask, which form the value that is written
to that address.

• Print a string that describes the read that verifies the write.

• Burst read that starts at address 0x0004000000 and is 16 doublewords long.

Example 5: Format of the fabric.in file

##########

# Insert a delay to allow the DLLs some time to lock

D 100

##########

# Test access to the internal register space. The internal

# registers are mapped by the RT Client into the register space

# (i.e. $00_0400_0000 to $00_07FF_FFFF, or the top 64 Mbytes);

####

P Fabric Model: Testing a burst read of the registers

####

R 0004000000 0000000300360100 FF 0 F # Read base, revision, etc

B 0000000000000000 FF # Read the App. Config

B 0000000000000000 FF # Read the App. Latch

B AAAAAAAAAAAAAAAA FF # Read the user register 1

S–6400–131 Cray Private 65



Cray XD1™ FPGA Development

B BBBBBBBBBBBBBBBB FF # Read the user register 2

B CCCCCCCCCCCCCCCC FF # Read the user register 3

B DDDDDDDDDDDDDDDD FF # Read the user register 4

B EEEEEEEEEEEEEEEE FF # Read the user register 5

##########

P Fabric Model: Testing a burst write to the registers

####

W 0004000018 0123456789ABCDEF FF 0 9 # Write user register 1

B 55AA55AA55AA55AA FF # Write user register 2

B FEDCBA9876543210 FF # Write the user register 3

B FFFFFFFFFFFFFFFF FF # Write the user register 4

B AA55AA55AA55AA55 FF # Write the user register 5

##########

P Fabric Model: Reading back the registers

####

R 0004000000 0000000300360100 FF 0 F # Read base,revision,etc

B 0000000000000000 FF # Read the App. Config

B 0000000000000000 FF # Read the App. Latch

B 0123456789ABCDEF FF # Read the user register 1

B 55AA55AA55AA55AA FF # Read the user register 2

B FEDCBA9876543210 FF # Read the user register 3

B FFFFFFFFFFFFFFFF FF # Read the user register 4

B AA55AA55AA55AA55 FF # Read the user register 5

8.1.2.1 FPGA Transfer Region

The FPGA transfer region (FTR) is a portion of the SMP processor DRAM that
is shared with the FPGA—see Example 4, page 61. The fabric model simulates
this region using the ram signal, which is of type qw_array for quadword
array. If you need initial values in the FTR, modify the fabric model ram signal
accordingly.

8.2 Using the JTAG Interface Card

In addition to design verification through simulation, it can be necessary to verify
and debug the design on the target hardware. Many types of problem are quite
difficult and time consuming to anticipate, recreate, and test in a simulation
environment. To facilitate target debugging, the Cray XD1 system provides
access to the JTAG port of the FPGA.

66 Cray Private S–6400–131



Simulation and Debugging [8]

8.2.1 The JTAG Interface Card

Access to a JTAG port occurs through an optional JTAG interface card (see Figure
19, page 67), which plugs into one of the high-speed I/O slots in the back of the
Cray XD1 chassis.

Figure 19. JTAG interface card

Note: The Cray XD1 product warranty requires that only Cray service
personnel, Cray-authorized service providers, or Cray-trained customers
perform hardware maintenance. See the http://crinform.cray.com/xd/
website for information on Cray XD1 training programs and service support.
If you install a JTAG interface card in the field, read and follow the field
replacement procedure that comes with the card.

8.2.2 Mapping JTAG Interface Ports to FPGAs

The three I/O slots on the back of the Cray XD1 chassis are numbered 1 through
3 from left to right as seen from the back of the chassis. Each JTAG interface card
has two ports that are numbered 1 and 2 from top to bottom. Figure 20, page 68
shows the configuration. Note that this figure shows three JTAG interface cards
installed; there may be fewer in your system. Typically, a PCI-X expansion card
occupies I/O slot 1.

S–6400–131 Cray Private 67

http://crinform.cray.com/xd/


Cray XD1™ FPGA Development

Slot 1 Slot 2 Slot 3

Port 1

Port 2

Figure 20. Ports on the JTAG interface card

Each port can connect to one of the six possible FPGAs in a chassis. Table 14,
page 68 lists the default mapping of JTAG ports to FPGAs.

Table 14. JTAG interface card default connections

Slot 1 Slot 2 Slot 3

Port 1 Node 1 Node 3 Node 5

Port 2 Node 2 Node 4 Node 6

If the default mapping is appropriate, you can proceed to connect your
workstation to the relevant port with no further configuration task. Otherwise,
you can use a Cray XD1 command to manage the connections of JTAG interface
ports to FPGAs. You can view the current mapping of ports to FPGAs in a
chassis, map any port to any FPGA in the chassis, or restore the default mapping
of ports to FPGAs in a chassis.

8.2.2.1 Viewing JTAG Interface Port Connections

Use the following command to view the current connections of JTAG interface
ports to FPGAs:

> xd1_jtag_route --chassis=chassis-addr --show

where chassis-addr is the address of the chassis in one of the following forms:

• IP address: aaa .bbb. ccc.ddd

This address appears on the first line of the LCD on the front of the chassis.

• Host name: chassischassis-id

where chassis-id is the hardware ID (serial number) of the chassis. An example
of the chassis host name is chassis371.

68 Cray Private S–6400–131



Simulation and Debugging [8]

The command lists the current connections and the state (enabled or disabled)
and status of each.

8.2.2.2 Connecting a JTAG Interface Port to an FPGA

Use the following command to map a JTAG interface port to a particular FPGA
in a particular chassis:

> xd1_jtag_route --chassis=chassis-addr --slot=slot-num

––port=port-num --aap=node-num

where chassis-addr is as described in Section 8.2.2.1, page 68, slot-num is the
number of the slot that the JTAG interface card occupies, port–num is the number
of the relevant port on the card, and node-num is the ordinal of the target node
(and hence the FPGA) in the chassis.

Example 6: Connecting a JTAG interface port to an FPGA

To connect the upper port on a JTAG interface card in I/O slot 2 of chassis 371
to the FPGA on node 5 of that chassis:

> xd1_jtag_route --chassis=chassis371 --slot=2 --port=1 --aap=5

8.2.2.3 Restoring the Default JTAG Interface Port Connections

Use the following command to restore the default mapping of JTAG interface
ports to FPGAs:

> xd1_jtag_route --chassis=chassis-addr --default

where chassis-addr is as described in Section 8.2.2.1, page 68.

The command resets the mapping of all JTAG interface ports to the default
shown in Table 14, page 68.

8.2.3 Connecting a Workstation to a JTAG Interface Port

The JTAG port enables you to use tools such as the ChipScope Pro debugger from
Xilinx with the FPGA. ChipScope provides logic analyzer-like functionality—it
enables you to monitor and capture logic events as they occur in the
FPGA. For more information on ChipScope, refer to the Xilinx website at
http://www.xilinx.com.

S–6400–131 Cray Private 69

http://www.xilinx.com


Cray XD1™ FPGA Development

Currently, the ChipScope Analyzer software runs only on the Windows operating
system of a PC. It connects to the target device through the parallel port of the
PC. Cray provides an RJ-45 to DB25 adapter that enables you to connect a CAT 5
cable between a port on the JTAG interface card and the PC parallel port. Figure
21, page 70 illustrates the adapter.

SIDE VIEW OF ADAPTER
REAR VIEW OF

ADAPTER

1 2 3 4 5 6 7 8

Figure 21. JTAG I/O adapter

The JTAG adapter plugs into the parallel port of a PC, and a standard CAT5
(straight-through) networking cable connects the adapter to the JTAG interface
card in a Cray XD1 system; see Figure 22, page 71.

!
Caution: The CAT 5 connector and cable are identical to Ethernet equipment.
Do not accidentally plug networking equipment into the JTAG interface card.
Damage to the networking equipment and/or the JTAG interface card may
occur.

70 Cray Private S–6400–131



Simulation and Debugging [8]

to PC

RJ-45 to DB25 adapter

CAT 5 cable
(straight)

Figure 22. Accessing the JTAG interface card

S–6400–131 Cray Private 71



Cray XD1™ FPGA Development

72 Cray Private S–6400–131



Troubleshooting [9]

This chapter describes some issues that may occur with the FPGA application
acceleration processor and how to resolve them.

9.1 Node Hangs After Accessing /proc/ufp/regs

9.1.1 Cause

The FPGA AAP did not respond to an SMP processor read request.

9.1.2 Discussion

If an FPGA AAP is programmed but the user logic is in a reset state (via the
fcu --reset command or the fpga_reset(3) function call), the FPGA APP
cannot respond to SMP processor read requests. If a request is made, the SMP
processor experiences a bus timeout and reboot.

Use the reset functionality with care. If possible, restrict its use to debugging. If
you erase the device (via the fcu --unload command or the fpga_unload(3)
function call), the bus transaction is handled correctly.

This behavior may change in a future release.

9.2 File /dev/ufp0 Does Not Exist (Interaction with the FPGA AAP Fails)

9.2.1 Cause

The FPGA AAP kernel module is not properly installed.

9.2.2 Discussion

The Opteron processors access the FPGAs through a standard Linux device
driver. The Cray XD1 Active Manager software automatically detects the
expansion module on a compute blade and loads the driver. If the Active
Manager software is not running or fails to install the driver, you can load
the module manually in the same way as any other Linux device driver. The

S–6400–131 Cray Private 73



Cray XD1™ FPGA Development

following procedure describes how to configure the kernel to load the driver
automatically when it is required.

Note: This procedure is required only if Active Manager is not in use. If Active
Manager is running, these entries will already exist.

Procedure 1: To load the FPGA driver

1. Log in to the relevant node of the Cray XD1 system as root.

2. Create the ufp device:

# mknod /dev/ufp0 c 62 0

3. Add the following three lines to the /etc/modules.conf file:

alias char-major-62 ufp

alias ufp0 ufp

options ufp cm_part_num=module-number

where module-number is the Cray part number of the target module in
quotation marks (for example, "90-0003-05"). Refer to Table 3, page 13 for
a list of available modules.

After the operating system loads driver, the FPGA special file /dev/ufp0
appears. The FPGA device driver will load when it is required. Generally this
occurs when a user application or the fcu(1) utility loads the FPGA. You can
force the driver to load by running the fcu -r . After the driver is loaded, the
virtual files /proc/ufp/fpga and /proc/ufp/regs appear on the SMP.

74 Cray Private S–6400–131



Glossary

AAP

Application acceleration processor. See FPGA application acceleration processor.

Active Manager

The software that monitors and manages all aspects of the Cray XD1 system.
Its user interfaces provide administrators and end users with a single point of
control for the system.

chassis ID

The permanent numeric identifier of a chassis, unique to each Cray XD1 chassis.
A chassis ID has a maximum of six decimal digits.

compute blade

One of six circuit boards in a Cray XD1 chassis; contains Opteron processors
configured as an SMP, DIMMs, and a RapidArray processor. A compute blade
may also have an expansion module.

Cray XD1 system

A stand-alone Cray XD1 chassis or multiple chassis that communicate over both
the supervisory network and the RapidArray interconnect.

crossbar switch

A communications switch that provides direct connection between any pair of
ports.

DDR SDRAM

Double data rate synchronous dynamic random-access memory.

doubleword

Four bytes (32 bits).

expansion module

Optional Cray XD1 hardware that connects to each compute blade; if they are

S–6400–131 Cray Private 75



Cray XD1™ FPGA Development

present, a chassis has six expansion modules. The expansion modules provide
a node with a second RapidArray processor, two additional Rapid Array links,
and an optional application acceleration processor.

fabric

The collection of fabric components that interconnect in the same switching
plane. A Cray XD1 system has one or two independently wired, parallel
RapidArray fabrics: the main fabric and the optional expansion fabric. These
fabrics are also known as fabric X and fabric Y, respectively.

fabric expansion card

Optional hardware in a Cray XD1 chassis that adds a second RapidArray
fabric to the system: provides a second internal 24-port RapidArray switch,
12 additional internal links, and 12 additional external ports for chassis
interconnection. The fabric expansion card connects to the main board.

field-programmable gate array

An integrated circuit that consists of arrays of AND and OR gates (typically
thousands) that can be programmed to perform complex functions. The Cray
XD1 system has optional FPGAs available for use as application acceleration
processors.

FPGA

See field-programmable gate array.

FPGA application acceleration processor

An FPGA that users can program to accelerate computationally intensive and
repetitive algorithms; acts as a co-processor to the Opteron processor. This is an
optional component on the expansion module. See also JTAG interface card.

interconnect

See RapidArray interconnect.

JTAG interface card

Optional hardware that tests the application acceleration processor's integrated
circuits. This card connects to one of the high-speed I/O slots on the main board
of a Cray XD1 chassis.

76 Cray Private S–6400–131



Glossary

link

See RapidArray link.

management processor

The processor on the main board of a Cray XD1 chassis that runs the Active
Manager hardware supervisory subsystem.

node

An instance of the Linux operating system and the hardware components that
it controls. The hardware components in a Cray XD1 node include an SMP
and its associated memory, one or two RapidArray processors (depending on
configuration) and, optionally, an FPGA application acceleration processor.

PCI-X expansion card

Hardware in the Cray XD1 chassis that provides four PCI-X slots for Gigabit
Ethernet and Fibre Channel cards. This card also provides connectors for three
disk blades. It connects to one of the three high-speed I/O slots on the main
board.

quadword

Eight bytes (64 bits).

RAP

RapidArray processor.

RapidArray interconnect

The high-speed network that interconnects the nodes in a Cray XD1 chassis,
and connects all nodes in a Cray XD1 system via cables and optional external
RapidArray switches. The RapidArray interconnect consists of a main and an
optional expansion fabric, each with its own set of fabric components. The
configuration of the RapidArray interconnect in a multichassis system is called
the physical topology.

RapidArray link

The physical communication path between two RapidArray ports. Each link
can carry two gigabytes per second.

S–6400–131 Cray Private 77



Cray XD1™ FPGA Development

RapidArray processor

The special-purpose processor on a Cray XD1 compute blade; responsible for
most communication functions within the system. The RapidArray processor
interfaces an Opteron processor to the RapidArray fabric.

RapidArray switch

A full-crossbar nonblocking switch in the RapidArray fabric. The base
configuration includes one 24-port RapidArray switch in each Cray XD1 chassis.
The optional fabric expansion card adds a second RapidArray switch. Equivalent
external RapidArray switches are available for implementing fat tree (switched)
topologies.

RapidArray Transport core

An IP core for the FPGA application acceleration processor that provides the
logic necessary for an FPGA design to interface (via the RapidArray fabric) to the
rest of the Cray XD1 system.

SMP

Symmetric multiprocessor.

switch fabric

See fabric.

ufp

User FPGA processor. A combining form that occurs in file and directory names;
for example, in libufp.a. It is a synonym for the FPGA application acceleration
processor.

78 Cray Private S–6400–131


	Cray XD1™ FPGA Development
	New Features
	Preface
	Accessing Product Documentation
	Conventions
	Reader Comments
	Cray XD1 Support

	Introduction [1]
	1.1 Who Should Read this Manual
	1.2 Scope of this Manual
	1.3 How this Manual is Organized
	1.4 Related Publications
	1.4.1 Cray XD1 Publications
	1.4.2 Third-party Publications


	Cray XD1 Architecture [2]
	2.1 Cray XD1 High-level Physical Layout
	2.1.1 Chassis
	2.1.2 Compute Blade
	2.1.3 Expansion Module

	2.2 RapidArray Interconnect

	Expansion Module [3]
	3.1 FPGA
	3.1.1 Configurable Logic Blocks
	3.1.2 Block SelectRAM+ Memory Modules
	3.1.3 Embedded Multiplier Blocks
	3.1.4 Digital Clock Manager Blocks
	3.1.5 Virtex II Fabric (Routing and Interconnect)
	3.1.6 Embedded IBM PowerPC 405 RISC Processor Blocks

	3.2 QDR II SRAM Interface
	3.3 RapidArray Transport Interface

	Quick Start [4]
	4.1 Reference Design Overview
	4.2 Command-line Manipulation of FPGAs
	4.2.1 Overview
	4.2.2 Copying the Design Directory
	4.2.3 Converting FPGA Binary Files
	4.2.4 Downloading Files to the FPGA
	4.2.5 Accessing the FPGA
	4.2.6 Erasing the FPGA

	4.3 Running the C Reference Programs

	Standard HDL Development Flow [5]
	5.1 Overview of the Development Process
	5.2 Design Entry
	5.3 Synthesis
	5.4 Simulation
	5.5 Implementation

	Design Considerations [6]
	6.1 Advantages and Disadvantages of FPGAs
	6.2 Target Applications
	6.2.1 Characteristics of Target Applications
	6.2.2 Sample Application

	6.3 FPGA Memory Resources
	6.4 Fabric Bandwidth and Data Flow
	6.5 SMP Processor-initiated Fabric Transactions
	6.6 FPGA-initiated Fabric Transactions
	6.7 Limitations

	Designing for the Cray XD1 System [7]
	7.1 Overview
	7.2 Design Template Structure
	7.3 Working with the Design Template
	7.3.1 Tools
	7.3.2 Required Customizations
	7.3.3 Command Line Execution and Makefile Targets
	7.3.4 Using the Xilinx ISE GUI
	7.3.5 Simulating the Design

	7.4 Interfacing User Logic to Other Cray XD1 Resources
	7.4.1 Disabling Unused Core Interfaces

	7.5 Interaction with the SMP Software Application
	7.5.1 Memory Map
	7.5.2 Software API Commands
	7.5.3 SMP-initiated RT Fabric Requests
	7.5.3.1 I/O Mapped Accesses
	7.5.3.1.1 Software API Details
	7.5.3.1.2 Hardware API Details

	7.5.3.2 API Function Accesses
	7.5.3.2.1 Software API Details
	7.5.3.2.2 Hardware API Details


	7.5.4 FPGA-initiated RT Fabric Requests


	Simulation and Debugging [8]
	8.1 Simulation Models
	8.1.1 Cray XD1 Core Simulation Models
	8.1.2 RT Fabric Behavioral Model
	8.1.2.1 FPGA Transfer Region


	8.2 Using the JTAG Interface Card
	8.2.1 The JTAG Interface Card
	8.2.2 Mapping JTAG Interface Ports to FPGAs
	8.2.2.1 Viewing JTAG Interface Port Connections
	8.2.2.2 Connecting a JTAG Interface Port to an FPGA
	8.2.2.3 Restoring the Default JTAG Interface Port Connections

	8.2.3 Connecting a Workstation to a JTAG Interface Port


	Troubleshooting [9]
	9.1 Node Hangs After Accessing /proc/ufp/regs
	9.1.1 Cause
	9.1.2 Discussion

	9.2 File /dev/ufp0 Does Not Exist (Interaction with the FPGA AAP
	9.2.1 Cause
	9.2.2 Discussion


	Glossary
	List of Examples
	Example 1: Using makefile targets
	Example 2: I/O mapped writes to the AAP
	Example 3: Accessing the AAP with fpga_wrt_appif_val
	Example 4: Initializing the AAP to access the SMP memory
	Example 5: Format of the fabric.in file
	Example 6: Connecting a JTAG interface port to an FPGA

	List of Procedures
	Procedure 1: To load the FPGA driver

	List of Tables
	Table 1. Related Cray XD1 publications 
	Table 2. VHDL references
	Table 3. Current FPGA AAP variants 
	Table 4. Results of random number generation
	Table 5. Available memory devices 
	Table 6. ufpapps directory descriptions
	Table 7. Template design directory descriptions 
	Table 8. Recommended software packages 
	Table 9. Design template customizations 
	Table 10. Makefile targets 
	Table 11. C API functions
	Table 12. Commands supported in the fabric.in  file
	Table 13. Arguments of the fabric.in commands 
	Table 14. JTAG interface card default connections


